Synthesis of Fe-Cu/MCM-41 nanocomposite and its application for treatment of Reactive Red 195
DOI:
https://doi.org/10.51316/jca.2020.025Keywords:
MCM-41, Fe-Cu/MCM-41, photocatalytic, Reactive Red 195Abstract
A series of Fe-Cu/MCM-41 nanocomposites were synthesized by dispersion of Fe-Cu on mesoporous silica MCM-41 obtained from natri silicat. The physical properties of Fe-Cu/MCM-41 were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption isotherm (BET) analysis. Effects of pH and H2O2 concentration were investigated. The best conditions were found to be pH of 3; 0.3 g.L−1 catalyst and reaction time of 60 min at room temperature. The novel Fe-Cu/MCM-41 composite exhibited highly photocatalytic performance of RR-195 degradation and the conversion reached to the value of 98.13 % for the 10Fe-2Cu/SBA-15 after 60 min of reaction.
Downloads
References
Tschirch, R. Dillert, D. Bahnemann, B. Proft, A. Biedermann, B. Goer. Res. Chem. Intermed. 34 (4) (2008) 381-392.
https://doi.org/10.1163/156856708784040588
Th. Maggos, J. G. Bartzis, M. Liakou, C. Gobin. J. Hazard. Mater., 146 (3) (2007) 668-673. https://doi.org/10.1016/j.jhazmat.2007.04.079
C. J. Chang, K. L. Huang, J. K. Chen, K. W. Chu, M. H. Hsu. Chem. Eng, 55 (2015) 82-89. https://doi.org/10.1016/j.jtice.2015.04.024
N. Mandzy, E. Grulke, and T. Druffel. Powder Technology, vol.160, (2005) 121–126. https://doi.org/10.1016/j.powtec.2005.08.020
Q. Zhang, J. B. Joo, Z. Lu. Nano Research, vol. 4, (2011) 103–114. https://doi.org/10.1007/s12274-010-0058-9
6. Y. Ling, M. Long, P. Hu, Y. Chen, and J. Huang, . Journal of Hazardous Materials, vol. 264, (2014) 195–202. https://doi.org/10.1016/j.jhazmat.2013.11.008
Xuan Nui Pham, Tuan Dat Pham, Ba Manh Nguyen, Hoa Thi Tran, and Dinh Trong Pham. Journal of Chemistry Volume (2018) https://doi.org/10.1155/2018/8418605
Xuan Nui Pham, Ba Manh Nguyen, Hoa Tran Thi, Huan Van Doan. Advanced Powder Technology 29 (2018) 1827–1837. https://doi.org/10.1016/j.apt.2018.04.019
Tuan T. Nguyen, Giang H. Le, Chi H. Le, Manh B. Nguyen, Trang T. T. Quan, Trang T. T. Pham and Tuan A. Vu. Materials Research Express, (2018), 5 115005. https://doi.org/10.1088/2053-1591/aadce1
Martin Hartmann, Simon Kullmanna and Harald Keller. J. Mater. Chem. (2010) 9002-9017. https://doi.org/10.1039/C0JM00577K
Shouwei Zhang, Meiyi Zeng, Jiaxing Li, Jie Li, Jinzhang Xu and Xiangke Wang. Journal of Materials Chemistry A, Received 9th November 2013 Accepted 3rd January 2014. https://doi.org/10.1039/C3TA14604A
Lu, J., Jiao, X., Chen, D., Li, W., J. Phys. Chem. C, 113, (2009) 4012–4017. https://doi.org/10.1021/jp810583e
Xin-jiang Hu, Yun-guo Liu, Guang-ming Zeng, Hui Wang, Shao-hong You, Xi Hu, Xiao-fei Tan, An-wei Chen, Chemosphere, (2015) 35-41. https://doi.org/10.1016/j.chemosphere.2015.01.013
Bo Yang, Zhang Tian, Li Zhang, Yaopeng Guo, Shiqiang Yan. Journal of Water Process Engineering, (2015) 101–111. https://doi.org/10.1021/acsanm.9b01608