Anchoring Ag3PO4 nanoparticles on MIL-101(Fe)@nanocellulose composite for tetracycline degradation

Authors

  • Nguyen Thi Hoa Deparment of Chemical Engineering, Hanoi University of Mining and Geology Author
  • Le Thi Nguyen Deparment of Chemical Engineering, Hanoi University of Mining and Geology Author
  • Vu Van Tai Department of Chemical Engineering, Hanoi University of Mining and Geology Author
  • Pham Xuan Nui Department of Chemical Engineering, Hanoi University of Mining and Geology Author

DOI:

https://doi.org/10.51316/jca.2021.079

Keywords:

Photocatalyst, Nanocellulose (NC), Ag3PO4@MIL-101(Fe)@NC, Tetracycline (TC)

Abstract

In this research, the combination of the photocatalytic activity of the semiconductor Ag3PO4 and the as-synthesized MIL-101(Fe)@nanocellulose (NC) from agricultural and bottle waste sources exhibited great photocatalytic efficiency. The Ag3PO4@MIL-101(Fe)@nanocelllulose (NC) composite has overcome the disadvantages of pure Ag3PO4 and significantly improved the photocatalytic activity. Structural characteristics, morphology of the materials were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscope (EDX), and UV–vis diffuse reflectance spectroscopy (UV-vis DRS) methods. From the obtained results, composite has a narrow bandgap energy (2.45 eV) and excellent catalytic performance in the photodegradation of Tetracycline pollutants (99.7 % after 120 min). It demonstrates the development of new catalysts made from agricultural waste sources that show high stability, ease of fabrication and can operate in natural light for environmental remediation.

Downloads

Download data is not yet available.

References

C. G. Daughton and T. A. Ternes, Pharmaceuticals and personal care products in the environment: agents of subtle change?, Environ. Health Perspect., vol. 107, no. suppl 6 (1999) 907–938. https://doi.org/ 10.1289/ehp.99107s6907

I. Dalmázio, M. O. Almeida, R. Augusti, and T. M. A. Alves, Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry, J. Am. Soc. Mass Spectrom., vol. 18, no. 4, (2007) 679–687. https://doi.org/10.1016/j.jasms.2006.12.001

I. R. Bautitz and R. F. P. Nogueira, Degradation of tetracycline by photo-Fenton process—Solar irradiation and matrix effects, J. Photochem. Photobiol. A Chem., vol. 187, no. 1 (2007) 33–39. https://doi.org/10.1016/j.jphotochem.2006.09.009

H. Sanderson et al., Dissipation of oxytetracycline, chlortetracycline, tetracycline and doxycycline using HPLC–UV and LC/MS/MS under aquatic semi-field microcosm conditions, Chemosphere, vol. 60, no. 5, (2005) 619–629. https://doi.org/10.1016/j.chemosphere.2005.01.035

J. W. Fritz and Y. Zuo, Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography, Food Chem., vol. 105, no. 3 (2007) 1297–1301. https://doi.org/10.1016/j.foodchem.2007.03.047

A. K. Sarmah, M. T. Meyer, and A. B. A. Boxall, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere, vol. 65, no. 5 (2006) 725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026

X.-D. Zhu, Y.-J. Wang, R.-J. Sun, and D.-M. Zhou, Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2, Chemosphere, vol. 92, no. 8 (2013) 925–932. http://dx.doi.org/10.1016/j.chemosphere.2013.02.066.

C. Reyes et al., Degradation and inactivation of tetracycline by TiO2 photocatalysis, J. Photochem. Photobiol. A Chem., vol. 184, no. 1–2 (2006) 141–146. http://dx.doi.org/10.1016/j.chemosphere.2013.02.066.

R. A. Palominos, M. A. Mondaca, A. Giraldo, G. Peñuela, M. Pérez-Moya, and H. D. Mansilla, Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions, Catal. Today, vol. 144, no. 1–2 (2009) 100–105. https://doi.org/10.1016/j.cattod.2008.12.031

Z. Yi et al., An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater., (2010) https://doi.org/10.1038/nmat2780

H. Zhai et al., Effect of chemical etching by ammonia solution on the microstructure and photocatalytic activity of Ag3PO4 photocatalyst, Appl. Catal. A Gen., vol. 528 (2016) 104–112. http://dx.doi.org/10.1016/j.apcata.2016.10.003

M. Al Kausor, S. Sen Gupta, and D. Chakrabortty, Ag3PO4-based nanocomposites and their applications in photodegradation of toxic organic dye contaminated wastewater: Review on material design to performance enhancement, Journal of Saudi Chemical Society., vol. 24, (2020) 20-24. https://doi.org/10.1016/j.jscs.2019.09.001

D. J. Martin et al., Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective, Chem. Soc. Rev., vol. 44, no. 21 (2015) 7808–7828. https://doi.org/10.1039/C5CS00380F

W. da S. Pereira et al., Influence of Cu substitution on the structural ordering, photocatalytic activity and photoluminescence emission of Ag3-2xCuxPO4 powders, Appl. Surf. Sci., vol. 440 (2018) 61–72. http://dx.doi.org/10.1016/j.apsusc.2017.12.202

F.-R. Wang, J.-D. Wang, H.-P. Sun, J.-K. Liu, and X.-H. Yang, Plasmon-enhanced instantaneous photocatalytic activity of Au@ Ag3PO4 heterostructure targeted at emergency treatment of environmental pollution, J. Mater. Sci., vol. 52, no. 5 (2017) 2495–2510. https://link.springer.com/article/10.1007%2Fs10853-016-0544-x

X. Xie et al., Tuning the bandgap of photo-sensitive polydopamine/Ag3PO4/graphene oxide coating for rapid, noninvasive disinfection of implants, ACS Cent. Sci., vol. 4, no. 6 (2018) 724–738. http://dx.doi.org/10.1021/acscentsci.8b00177

Q. Yang, Q. Xu, and H.-L. Jiang, Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis, Chem. Soc. Rev., vol. 46, no. 15 (2017) 4774–4808. https://doi.org/10.1039/C6CS00724D

L. Chen, R. Luque, and Y. Li, Controllable design of tunable nanostructures inside metal–organic frameworks, Chem. Soc. Rev., vol. 46, no. 15 (2017) 4614–4630. https://doi.org/10.1039/C6CS00537C

G. Wyszogrodzka, B. Marszałek, B. Gil, and P. Dorożyński, Metal-organic frameworks: mechanisms of antibacterial action and potential applications, Drug Discov. Today, vol. 21, no. 6 (2016) 1009–1018. https://doi.org/10.1016/j.drudis.2016.04.009

J. Li, L. Wang, Y. Liu, P. Zeng, Y. Wang, and Y. Zhang, Removal of Berberine from Wastewater by MIL-101 (Fe): Performance and Mechanism, ACS omega, vol. 5, no. 43 (2020) 27962–27971. https://doi.org/10.1021/acsomega.0c03422

T. M. Budnyak, A. Slabon, and M. H. Sipponen, Lignin–inorganic interfaces: chemistry and applications from adsorbents to catalysts and energy storage materials, ChemSusChem, vol. 13, no. 17 (2020) 4344. https://doi.org/10.1002/cssc.202000216

M. Kaushik and A. H. Moores, Nanocelluloses as versatile supports for metal nanoparticles and applications in catalysis, Green Chem., vol. 18 (2016) 622-637.

https://doi.org/10.1039/C5GC02500A

P. R. Sharma, S. K. Sharma, R. Antoine, and B. S. Hsiao, Efficient removal of arsenic using zinc oxide nanocrystal-decorated regenerated microfibrillated cellulose scaffolds, ACS Sustain. Chem. Eng., vol. 7, no. 6 (2019) 6140–6151. https://doi.org/10.1021/acssuschemeng.8b06356

M. Rathod, P. G. Moradeeya, S. Haldar, and S. Basha, Nanocellulose/TiO2 composites: preparation, characterization and application in the photocatalytic degradation of a potential endocrine disruptor, mefenamic acid, in aqueous media, Photochem. Photobiol. Sci., vol. 17, no. 10 (2018) 1301–1309. https://doi.org/10.1039/C8PP00156A

H.-Y. Yu, G.-Y. Chen, Y.-B. Wang, and J.-M. Yao, A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity, Cellulose, vol. 22, no. 1 (2015) 261–273. http://dx.doi.org/10.1007/s10570-014-0491-0

R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev., vol. 40, no. 7 (2011) 3941–3994. https://doi.org/10.1039/C0CS00108B

H. V Doan et al., Improved photodegradation of anionic dyes using a complex graphitic carbon nitride and iron-based metal-organic framework material, Faraday Discuss (2021). https://doi.org/10.1039/D1FD00010A.

N. Pa’e, W. C. Liew, and I. I. Muhamad, Production of cellulose nano-crystals from bacterial fermentation, Mater. Today Proc., vol. 7 (2019) 754–762.

https://doi.org/10.1016/j.matpr.2018.12.071

K. Huang et al., One-step synthesis of Ag3PO4/Ag photocatalyst with visible-light photocatalytic activity, Mater. Res., vol. 18 (2015) 939–945. http://dx.doi.org/10.1590/1516-1439.346614

B. M. Cherian et al., Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications, Carbohydr. Polym., vol. 86, no. 4 (2011) 1790–1798. https://doi.org/10.1016/j.carbpol.2011.07.009

J. I. Morán, V. A. Alvarez, V. P. Cyras, and A. Vázquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose, vol. 15, no. 1 (2008) 149–159.

http://dx.doi.org/10.1007/s10570-007-9145-9

E. Abraham et al., Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach, Carbohydr. Polym., vol. 86, no. 4, (2011) 1468–1475.

https://doi.org/10.1016/j.carbpol.2011.06.034

M. Kandiah, S. Usseglio, S. Svelle, U. Olsbye, K. P. Lillerud, and M. Tilset, Post-synthetic modification of the metal–organic framework compound UiO-66, J. Mater. Chem., vol. 20, no. 44, (2010) 9848–9851. https://doi.org/10.1039/C0JM02416C

T. Guo, K. Wang, G. Zhang, and X. Wu, A novel α-Fe2O3@g-C3N4 catalyst: synthesis derived from Fe-based MOF and its superior photo-Fenton performance, Appl. Surf. Sci., vol. 469, (2019) 331–339. https://doi.org/10.1016/j.apsusc.2018.10.183

Q. Wu, P. Wang, F. Niu, C. Huang, Y. Li, and W. Yao, A novel molecular sieve supporting material for enhancing activity and stability of Ag3PO4 photocatalyst, Appl. Surf. Sci., vol. 378 (2016) 552–563. http://dx.doi.org/10.1016/j.apsusc.2016.03.158

S. Lin, L. Liu, Y. Liang, W. Cui, and Z. Zhang, Oil-in-water self-assembled synthesis of Ag@ AgCl nano-particles on flower-like Bi2O2CO3 with enhanced visible-light-driven photocatalytic activity, Materials (Basel)., vol. 9, no. 6, (2016) 486. https://doi.org/10.3390/ma9060486

X. Q. Tang, Y. D. Zhang, Z. W. Jiang, D. M. Wang, C. Z. Huang, and Y. F. Li, Fe3O4 and metal–organic framework MIL-101 (Fe) composites catalyze luminol chemiluminescence for sensitively sensing hydrogen peroxide and glucose, Talanta, vol. 179, (2018) 43–50.

https://doi.org/10.1016/j.talanta.2017.10.049

L. He, Y. Dong, Y. Zheng, Q. Jia, S. Shan, and Y. Zhang, A novel magnetic MIL-101 (Fe)/TiO2 composite for photo degradation of tetracycline under solar light, J. Hazard. Mater., vol. 361 (2019) 85–94. http://dx.doi.org/10.1016/j.jhazmat.2018.08.079

X. Zhao, G. Zhang, and Z. Zhang, TiO2-based catalysts for photocatalytic reduction of aqueous oxyanions: State-of-the-art and future prospects, Environ. Int., vol. 136, (2020) 105453. https://doi.org/10.1016/j.envint.2019.105453

T. M. P. Nguyen et al., Phosphate adsorption by silver nanoparticles-loaded activated carbon derived from tea residue, Sci. Rep., vol. 10, no. 1 (2020) 1–13.

https://www.nature.com/articles/s41598-020-60542-0

Q. Gui, B. Fu, Y. He, S. Lyu, Y. Ma, and Y. Wang, Visualizing thermal distribution through hydrogel confined ionic system, Iscience, vol. 24, no. 2 (2021) 102085. http://dx.doi.org/10.1016/j.isci.2021.102085

L. Wang et al., Altered brain activities associated with craving and cue reactivity in people with Internet gaming disorder: Evidence from the comparison with recreational Internet game users, Front. Psychol., vol. 8 (2017) 1150. https://doi.org/10.3389/fpsyg.2017.01150

J.-W. Xu, Z.-D. Gao, K. Han, Y. Liu, and Y.-Y. Song, Synthesis of magnetically separable Ag3PO4/TiO2/Fe3O4 heterostructure with enhanced photocatalytic performance under visible light for photoinactivation of bacteria, ACS Appl. Mater. Interfaces, vol. 6, no. 17 (2014) 15122–15131. https://doi.org/10.1021/am5032727

J. Inamdar and S. K. Singh, Photocatalytic detoxification method for zero effluent discharge in dairy industry: Effect of operational parameters, Int. J. Chem. Biol. Eng., vol. 1, no. 4 (2008) 160–164. https://doi.org/10.5281/zenodo.1076514

S. Ahmed, M. G. Rasul, W. N. Martens, R. Brown, and M. A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments, Desalination. 2010. https://doi.org/ 10.1016/j.desal.2010.04.062

L. Yu, Z. Ye, J. Li, C. Ma, X. Liu, H. Wang, L. Tang, P. Huo and Y. Yan, Photocatalytic Degradation Mechanism of Tetracycline by Ag@ ZnO/C Core–Shell Plasmonic Photocatalyst Under Visible Light,” Nano, vol. 13, no. 06 (2018) 1850065. https://doi.org/10.1142/S1793292018500650

Published

31-12-2021

Issue

Section

Full Articles

How to Cite

Anchoring Ag3PO4 nanoparticles on MIL-101(Fe)@nanocellulose composite for tetracycline degradation. (2021). Vietnam Journal of Catalysis and Adsorption, 10(4), 125-136. https://doi.org/10.51316/jca.2021.079

Share

Funding data

Similar Articles

1-10 of 202

You may also start an advanced similarity search for this article.