Research on the fabrication of nanorod-structured phorphyrin/g-C3N4 as photocatalyst materials for the removal of Cr6+ ions in an aqueous solution
DOI:
https://doi.org/10.62239/jca.2024.026Keywords:
Photocatalyst, g-C3N4/porphyrin, self-assembly, dye treatmentAbstract
Due to their potential to expand the photon energy harvesting zones and improve charge separation, two semiconductors together have been shown to be a promising technique to increase the photocatalytic activity of photocatalysts. Through the use of monomeric porphyrin molecules and g-C3N4 nanomaterials, self-assembly of the hybird g-C3N4@porrphyrin nanorod materials under CTAB surfactant-assited conditions was demonstrated in this study. SEM, EDS, FTIR, and UV-vis were used to characterize the generated hybrid material. Under simulated sunlight irradiation, the hybrid mateial’s photocatalytic behaviour was examined for the photoreduction of Cr6+ ions. After 100 minutes of reaction time under the simulated solar spectrum, the results showed that the hybrid material demonstrated high photocatalytic performance against, with clearance percentage of almost 100%. The prepared photocatalyst was also highly stable with the reduction of Cr6+ removal efficiency of less than 10% after 4 cycles of photocatalytic testing.
Downloads
References
Chen, D. and A.K. Ray, Chemical Engineering Science 56(4) (2001) 1561-1570. https://doi.org/10.1016/S0009-2509(00)00383-3
Feng, S., et al., Sustainability 14(21) (2022) 13780. https://doi.org/10.3390/su142113780
Spanos, N., et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects 97(2) (1995) 109-117. https://doi.org/10.1016/0927-7757(95)03087-T
Wittbrodt, P.R. and C.D. Palmer, Environmental science & technology 29(1) (1995) 255-263. https://doi.org/10.1021/es00001a033
Serrano, B.d. and H. De Lasa, Chemical Engineering Science 54(15-16) (1999) 3063-3069. https://doi.org/10.1021/ie970104r
Colon, G., M. Hidalgo, and J. Navıo, Journal of Photochemistry and Photobiology A: Chemistry 138(1) (2001) 79-85. https://doi.org/10.1016/S1010-6030(00)00372-5
Safaei, J., et al., Journal of Materials Chemistry A 6(45) (2018) 22346-22380. https://doi.org/10.1039/C8TA08001A
Malik, R., et al., Journal of Materials Chemistry A 5(27) (2017) 14134-14143. https://doi.org/10.1039/C7TA02860A
Park, S., et al., Science 303(5656) (2004) 348-351. https://doi.org/10.1126/science.1093276
Ray, P.C., Chemical reviews 110(9) (2010) 5332-5365. https://doi.org/10.1021/cr900335q
Xiao, J. and L. Qi, Nanoscale 3(4) (2011) 1383-1396. htps://10.1039/C0NR00814A
Lin, C., et al., Angewandte Chemie International Edition 50(21) (2011) 4947-4951. https://doi.org /10.1002/ange.201007747
Wang, Z., C.J. Medforth, and J.A. Shelnutt, Journal of the American Chemical Society 126(49) (2004) 15954-15955. https://doi.org/10.1021/ja045068j
La, D.D., et al., Photochemical & Photobiological Sciences, 16 (2017) 151-154. https://doi.org/10.1039/c6pp00335d
Guo, P., et al., Journal of Materials Chemistry 22(38) (2012) 20243-20249. https://doi.org/10.1039/C2JM33253A
Lai, H.T., et al., Catalysts 12(12) (2022) 1630. https://doi.org/10.3390/catal12121630
Van Hoang, N., et al., ChemistrySelect 7(47) (2022) e202203499. https://doi.org/10.1002/slct.202203499
Fahimirad, B., A. Asghari, and M. Rajabi, Microchimica Acta 184 (2017) 3027-3035. https://doi.org/10.1007/s00604-017-2273-5
Sun, J., et al., Journal of Materials Chemistry 22(36) (2012) 18879-18886. https://doi.org/10.1039/C2JM33900E
Chen, Y., et al., Chemical Communications 49(80) (2013) 9200-9202. https://doi.org/10.1039/C3CC45169K
Kano, H. and T. Kobayashi, The Journal of chemical physics, 116(1) (2002) 184-195. https://doi.org/10.1063/1.1421073
Lotsch, B.V., et al., Chemistry–A European Journal 13(17) (2007) 4969-4980. https://doi.org/10.1002/chem.200601759
Mandal, S., et al., ACS Applied Materials & Interfaces 6(1) (2014) 130-136. https://doi.org/10.1021/am403518d
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers QTKR01.03/22-23