Green and facile synthesis of Fe3O4 nanoparticles using the Citrus aurantifolia fruit juice associated with NaBH4 and its adsorption of Cr(VI) in aqueous solution

Authors

  • Luong Huynh Vu Thanh Department of Chemical Engineering, Can Tho University, Can Tho, VIETNAM
  • Dao Lam Gia Hao Department of Chemical Engineering, Can Tho University, Can Tho, VIETNAM
  • Phan Thi Diem Trang Department of Chemical Engineering, Can Tho University, Can Tho, VIETNAM
  • Pham Minh Tien Department of Chemical Engineering, Can Tho University, Can Tho, VIETNAM
  • Tran Thi Bich Quyen Department of Chemical Engineering, Can Tho University, Can Tho, VIETNAM
  • Dang Huynh Giao Department of Chemical Engineering, Can Tho University, Can Tho, VIETNAM
  • Tran Nguyen Phuong Lan Department of Mechanical Engineering, Can Tho University, Can Tho, VIETNAM

DOI:

https://doi.org/10.51316/jca.2021.074

Keywords:

Citrus aurantifolia extract, Adsorption of Cr(VI), Facile synthesis, Green method, Magnetite nanoparticles

Abstract

This work presents a facile and green method using Citrus aurantifolia fruit extract for the biosynthesis of magnetite nanoparticles (MNs). The effects of some effective parameters such as temperature, reaction time and the ratio of Citrus aurantifolia extract to sodium borohydride on the synthesis were investigated. The synthesized Fe3O4 nanoparticles were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X- ray spectroscopy (EDX), transmission scanning electron microscopy (TEM), and vibrating sample magnetometer (VSM). The results showed that the MNs were well-monodisperse with the mean size of 50 nm and superparamagnetism value of 40.1 emu/g. Adsorption of Cr(VI) in aqueous solution at pH 2.5 using MNs reached 94.9% for removal of Cr(VI). The main contribution of this work was the synthesis of MNs in an economical and environmental friendly way, achieving size-controlled MNs at mild conditions. A possible mechanism of MNs synthesis was also presented.

Downloads

Download data is not yet available.

References

Z. Rahman, V.P. Singh, Environ. Monit. Assess. 191 (2019) 419-439. https://doi.org/10.1007/s10661-019-7528-7

S. Mahdavi, S.R. Allahkaram, J. Alloy. Compd. 635 (2015) 150-157. https://doi.org/10.1016/j.jallcom.2015.02.119

X.F. Lei, X.X. Xue, H. Yang, C. Chen, X. Li, J.X. Pei, M.C. Niu, Y.T. Yang, X.Y. Gao, J. Alloy. Compd. 646 (2015) 541-549. https://doi.org/10.1016/j.jallcom.2015.04.233

P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J. Zhu, H. He, J. Hazard. Mater. 173 (2010) 614-621. https://doi.org/10.1016/j.jhazmat.2009.08.129

S. Aredes, B. Klein, M. Pawlik, J. Clean. Prod., 60 (2013) 71-76. https://doi.org/10.1016/j.jclepro.2012.10.035

J. Saini, V.K. Garg, R.K. Gupta, J. Mol. Liq. 250 (2018) 413-422. https://doi.org/10.1016/j.molliq.2017.11.180

S.N. Wang, F.D. Zhang, A.M. Huang, Q. Zhou, De Gruyter 70 (2016) 503-510. https://doi.org/10.1515/hf-2015-0125

Z. Wang, J. Xu, Y. Hu, H. Zhao, J. Zhou, Y. Liu, Z. Lou, X. Xu, J. Taiwan Inst. Chem. E. 60 (2016) 394-402. https://doi.org/10.1016/j.jtice.2015.10.041

H. Zhang, G. Zhu, Appl. Surf. Sci. 258 (2012) 4952-4959. https://doi.org/10.1016/j.apsusc.2012.01.127

J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu , D. Zhu, J. Colloid. Interf. Sic. 349 (2010) 293-299. https://doi.org/10.1016/j.jcis.2010.05.010

C.M. Babu, Babu, B. Palasinamy, B. Sundaravel, M. Palachinamy, V. Murugesa, J. Nanosci. Nanotechno. 13 (2013) 2517-2527. https://doi.org/10.1166/jnn.2013.7376

S.H. Chaki, T.J. Malek, M.D. Chaudhary, J.P. Tailor, M.P. Deshpande, Adv. Nat. Sci: Nanosci. Nanotechnol. 6 (2015) 035009-035014. http://dx.doi.org/10.1088/2043-6262/6/3/035009

A. Ruíz-Baltazar, R. Esparza, G. Rosas, R. Pérez, J. Nanomater. 2015 (2015) 1-8. https://doi.org/10.1155/2015/240948

S.A. Jayanthi, D.M.G.T. Nathan, J. Jayashainy, P. Sagayaraj, Mater. Chem. Phys. 162 (2015) 316-325. https://doi.org/10.1016/j.matchemphys.2015.05.073

C. Meng, W. Zhikun, L. Qiang, L. Chunling, S. Shuangqing, H. Songqing, J. Hazard. Mater. 341 (2018) 198-206. https://doi.org/10.1016/j.jhazmat.2017.07.062

T.T. Tung, J. Feller, T. Kim, H. Kim, W.S. Yang, K.S. Suh, J. Polym. Sic. A1. 50 (2012) 927-935. https://doi.org/10.1002/pola.25847

M.M. Zaman, D.M.A.S Karal, D.M.N.I. Khan, A.R.M. Tareq, S. Ahammed, D.M. Akter, A. Hossain, A.K.M.A. Ullah, ChemistrySelect. 4 (2019) 7824-7831. https://doi.org/10.1002/slct.201901594

S. Ahmadian-Fard-Fini, M. Salavati-Niasari, D. Ghanbari, SAA. 2203 (2018) 481-493. https://doi.org/10.1016/j.saa.2018.06.021

T. Shahwan, S.A. Siriiah, M. Nairat, E. Boyaci, A.E. Eroğlu, T.B. Scott, K.R. Hallam, Chem. Eng. J. 172 (2011) 258-266. https://doi.org/10.1016/j.cej.2011.05.103

W. Lu, Y. Shen, A. Xie, W. Zhang, J. Magn. Magn. Mater. 322 (2010) 1828-1833. https://doi.org/10.1016/j.jmmm.2009.12.035

S. Li, L. Liu, Y. Yu, G. Wang, H. Zhang, A. Chen, J. Alloy. Compd. 698 (2017) 20-26. https://doi.org/10.1016/j.jallcom.2016.12.163

S. Chandrasekhar, A. Shrinidhi, Synthetic Commun., 44 (2014) 2051-2056. https://doi.org/10.1080/00397911.2014.888751

A.M. Awwad, N.M. Salem, Nanosci. Nanotechnol. 2 (2012) 208-213. https://doi: 10.5923/j.nn.20120206.09

T. Wang, J. Su, X. Jin, Z. Chen, M. Megharaj, R. Naidu, J. Hazard. Mater. 262 (2013) 819-825. https://doi.org/10.1016/j.jhazmat.2013.09.028

Y. Kuang, Q. Wang, Z. Chen, M. Megharaj, R. Naidu, J. Coll. Interf. Sci. 410 (2013) 67-73. https://doi.org/10.1016/j.jcis.2013.08.020

M. Krajewski, K. Brzozka, W.S. Lin, H.M. Lin, M. Tokarczyk, J. Borysiuk, G. Kowalskia, D. Wasik, Phys. Chem. Chem. Phys. 18(2016) 3900-3909. https://doi.org/10.1039/C5CP07569F

L.Y. Zhang, T. Chu, Bulletin of the Korean Chemical Society, 34 (2013) 1457-1461. https://doi.org/10.5012/bkcs.2013.34.5.1457

T. Wang, J. Lin, Z. Chen, M. Megharaj, R. Naidu, J. Clean. Prod., 83 (2014) 413-419. https://doi.org/10.1016/j.jclepro.2014.07.006

M. Mahdavi, F. Namvar, M.B. Ahmad, R. Mohamad, Molecules 18 (2013) 5954-5964. https://doi.org/10.3390/molecules18055954

A.S.Y. Ting, J.E. Chin, Water Air Soil Pollut. 231 (2020) 278. https://doi.org/10.1007/s11270-020-04658-z

R.K. Das, B.B. Borthakur, U. Bora, Mater. Lett. (2010) 64 1445-1447. https://doi.org/10.1016/j.matlet.2010.03.051

D.K. Kim, M. Mikhaylova, Y. Zhang, M. Muhammed, Chem. Mater. 15 (2003) 1617-1627. https://doi.org/10.1021/cm021349j

C.V. Gherasim, G. Bourceanu, R.I. Olariu, C. Arsene, J. Hazard. Mater. 197 (2011) 244-253. https://doi.org/10.1016/j.jhazmat.2011.09.082

F. Ghorbani, S. Kamari, Environ. Technol. Innov. 14 (2019) 100333. https://doi.org/10.1016/j.eti.2019.100333

G. Moussavi, B. Barikbin, Chem. Eng. J. 162 (2010) 893-900. https://doi.org/10.1016/j.cej.2010.06.032

Q. Hu, Z. Zhang, J. Mol. Liq. 277 (2019) 646-648. https://doi.org/10.1016/j.molliq.2019.01.005

Published

31-12-2021

Issue

Section

Full Articles

How to Cite

Green and facile synthesis of Fe3O4 nanoparticles using the Citrus aurantifolia fruit juice associated with NaBH4 and its adsorption of Cr(VI) in aqueous solution. (2021). Vietnam Journal of Catalysis and Adsorption, 10(4), 90-100. https://doi.org/10.51316/jca.2021.074

Share

Funding data

Most read articles by the same author(s)

Similar Articles

1-10 of 550

You may also start an advanced similarity search for this article.