Synthesis and characteristics of Ag/CuO nanomaterial
DOI:
https://doi.org/10.51316/jca.2023.007Keywords:
Ag/CuO nanomaterial, catalyst, methyl orangeAbstract
In this paper, Ag/CuO nanomaterials were successfully prepared by means of a hydrothermal method combined with chemical reduction. The synthesized Ag/CuO nanomaterials were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), surface area analysis (BET). Two factors influencing the synthesis of materials such as time of chemical reduction, concentration of silver nitrate were studied. The results showed that silver crystals were introduced into the CuO nanosheets. The BET specific surface area of the obtained Ag/CuO nanomaterial is 113.47 m2.g-1. This nanomaterial has a high catalytic activity for the decomposition of methyl orange (MO) in the presence of hydrogen peroxide.
Downloads
References
Qiaobao Z., Kaili Z., Daguo X., Guangcheng Y., Hui H., Fude N., Chenmin L., Shihe Y., Progress in Materials Science (2014) 60 208–337. https://doi.org/10.1016/j.pmatsci.2013.09.003
Kim Y-S., Hwang I-S., Kim S-J., Lee C-Y., Lee J-H, Sensors and Actuators B: Chem (2008) 135 298–303. https://doi.org/10.1016/j.snb.2008.08.026
Yang C., Su X., Xiao F., Jian J., Wang J., Sensors and Actuators B: Chem (2011) 158 299–303. https://doi.org/10.1016/j.snb.2011.06.024
Jing L., Jun J., Zhao D., Shao-Zhuan H., Zhi-Yi H., Li W., Chao W., Li-Hua C., Yu L., G. Van T., Bao-Lian S, Journal of Colloid and Interface Science (2012) 384 1-9.
https://10.1016/j.jcis.2012.06.044
Qiu G., Dharmarathna S., Zhang Y., Opembe N., Huang H., Suib S.L, Journal of Physical Chemistry C (2012) 116 468–477. https://doi.org/10.1021/jp209911k
Long-Shuo W., Jian-Cheng D., Fan Y., Ting C., Materials Chemistry and Physics (2008) 108 165–169. htpps://10.1016/j.matchemphys.2007.09.029
Tian Long, Long Yan, Song Shuyan, Wang Cheng, Chemical Journal of Chinese Universities (2019) 40 2549-2555. https://10.7503/cjcu20190382
Maryam L., Nasrin E., Korean Journal of Chemical Engineering (2013) 30. https://10.1007/s11814-013-0152-2
Xiaobing S., Bingxian C., Fan W., Xiaoling W., Lixia T., Minguang F., Bin L., Lihui D., Lin D.: ACS Applied Material Interfaces (2018) 10 40509−40522. https://10.1021/acsami.8b13220
Mahmoud Nasrollahzadeh, Tetrahedron Letters (2016) 57 337–339. https://doi.org/10.1016/j.tetlet.2015.12.019
Abdallah F. Zedan, Assem T. Mohamed, M. Samy El-Shall, Siham Y., AlQaradawi and Amina S. AlJabera, RSC Advances (2018) 8 19499. https://10.1039/c8ra03623c
Hany A. E., Sadek M.A., Adsorption Science & Technology (2018) 36 1352–1365.
https://10.1177/0263617418771777
Bouazizi N., Vieillard J., Thebault P., Desirac F., Clamens T., Bargougui R., Couvrat N., Thoumire O., Brun Ne., Ladam G., Morin S., Mofaddel N., Lesouhaitier O., Azzouz A., Le Derf F., Dalton Transactions (2018) 1-30. https://10.1039/C8DT02154F
Parvathiraja C., Shailajha S., Applied Nanoscience (2021) 11 1411–1425. https://doi.org/10.1007/s13204-021-01743-5
Behrouz S., Ebrahim A.G., Yashar A.K., Ali K., Advanced Powder Technology (2014) 25 1043–1052. https://10.1016/j.apt.2014.02.005
Nguyễn Lê Mỹ Linh, Bạch Thị Kim Hiếu, Vietnam Journal of Catalysis and Adsorption (2022) 11 1 74-79. https://doi.org/10.51316/jca.2022.011