A theoretical investigation of interaction of organic molecules with anatase-TiO2 (101) surface
Abstract
Understanding on existence, stability and role of interactions on material surfaces has been paid considerable interests from scientists. In the present work, we performed a theoretical investigation into adsorption of C6H5-R derivatives (R = -CHO, -COOH, -NH2, -OH, -SO3H) on anatase-TiO2 (101) surface using DFT calculations. The periodic model and PBE functional were used in all calculations for the investigated systems. Results indicate that the processes are evaluated as chemical adsorptions, characterized by adsorption energies ranging from -10 to -29 kcal.mol-1. The Ti‧‧‧O electrostatic interactions and O-H‧‧‧O hydrogen bonds govern the stability of configurations. Existence and role of interactions stabilizing the configurations are analysed in detail using quantum chemistry approaches including AIM, NBO methods and MEP maps. Especially, the adsorption capacity of the organic molecules on the anatase-TiO2 (101) surface decreases in the oder of -SO3H > -COOH > -NH2 > -CHO > -OH derivatives.
Downloads
References
C. Deiana et al., Chem. Phys. Chem. 7 (2016) 1-6.
F. D. Angelis, C. D. Valentin, S. Fantacci, A. Vittadini and A. Selloni, Chem. Rev. 114 (2014) 9708-9753.
G. Thomas and K. L. Syres, Chem. Soc. Rev. 41 (2012) 4207-4217.
G. Wua, C. Zhaoa, X. Zhoua, J. Chena, Y. Lia, Y. Chen, Appl. Surf. Sci. 455 (2018) 410-417.
C. L. Pang, R. Lindsay and G. Thornton, Chem. Soc. Rev. 37 (2008) 2328-2353.
G. Wu, C. Zhao, C. Guo, J. Chen, Y. Zhang, Y. Li, Appl. Surf. Sci. 428 (2018) 954-963.
M. Sowmiya and K. Senthilkumar, Theor. Chem. Acc. 135 (2016) 12(1-8).
E. R. Lewars, Computational Chemistry, Springer, Germany, 2016, p.728.
J. P. Perdew, K. Burke, M. Ernzerhof., Phys. Rev. Lett. 77 (1996) 3865-3868.
M. J. Frisch, G. W. Trucks, et al. Gaussian 09 (Revision B.01), Wallingford, CT: Gaussian, 2010.
R. F. W. Bader. Atoms in molecules: A quantum theory, Oxford: Oxford University Press, 1990.
F. Weinhold et al., GenNBO 5.G, TheoreticalChemistry Institute, University of Wisconsin:Madison, WI, 2001.
J. P. W. Treacy et al., Phys. Rev. B 95 (2017) 075416 (1-7).
NIST webpage: http://webbook.nist.gov/chemistry; http://cccbdb.nist.gov.
N. N. Tri, H. Q. Dai, N. T. Trung, Vietnam J. Chem. 56(6) (2018) 751-756.
S. J. Grabowski. Hydrogen Bonding - New Insights, Springer, Dordrecht, The Netherlands, 2006.
M. J. Tillotson, P. M. Brett, R. A. Bennett, R. G.Crespo., Surf. Sci. 632 (2015) 142-153.
S. J. Grabowski, J Mol Model. 19(11) (2013) 4713-21.
P. S. V. Kumar, V. Raghavendra and V. Subramanian, J. Chem. Sci. 128(10) (2016) 1527–1536.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.