A comparative study on the catalytic activities of the SrTiO3 perovskite and oxide CuO-ZnO mixed oxides for the oxidative coupling of methane

Authors

  • Hung Nguyen Thanh School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author
  • Phuong Pham Thi Mai Advanced Institute of Science and Technology, Hanoi University of Science and Technology, Hanoi, Vietnam Author
  • To Dang Thi School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author
  • Thang Le Minh School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author

DOI:

https://doi.org/10.51316/jca.2022.060

Keywords:

SrTiO3, CuO-ZnO, OCM, sol-gel

Abstract

In this study, SrTiO3 catalyst was prepared by sol-gel method and CuO-ZnO by co-precipitation for oxidative coupling of methane (OCM). The results showed that the conversion rate in the SrTiO3 sample was high (about 35%) at 850 oC, and the product C2H4 with an yield of 0.12%. Several modern analytical methods such as XRD, BET, TPx, SEM have been characterized. The XRD results showed a stable phase structure and high crystallinity with both samples. NH3-TPD recorded weak acid centers on SrTiO3, leading to coke formation on the impact surface. H2-TPR and O2-TPD express the redox of CuO-ZnO, resulting in a deep oxidation product of CO2. Factors affecting the ratio of C2H6 and C2H4 were also considered.

Downloads

Download data is not yet available.

References

Keller, G. E., M. M. Journal of Catalysis 73.1 (1982) 9-19.

https://doi.org/10.1016/0021-9517(82)90075-6

Enger, B.C., Lødeng, R. and Holmen, A. Applied Catalysis A: General 346.1-2 (2008) 1-27. https://doi.org/10.1016/j.apcata.2008.05.018

Pereñíguez, R., González-DelaCruz, V. M., Holgado, J. P., & Caballero, A. Applied Catalysis B: Environmental 93.3-4 (2010) 346-353. https://doi.org/10.1016/j.apcatb.2009.09.040

Beck, B., Fleischer, V., Arndt, S., Hevia, M. G., Urakawa, A., Hugo, P., & Schomäcker, R. Catalysis Today 228 (2014) 212-218. https://doi.org/10.1016/j.cattod.2013.11.059

Lomonosov, V. I., and M. Yu Sinev. Kinetics and Catalysis 57.5 (2016) 647-676. https://doi.org/10.1134/S0023158416050128

Labinger, Jay Ay. Catalysis letters 1.11 (1988) 371-375.

https://doi.org/10.1007/BF00766166

Arndt, S., Laugel, G., Levchenko, S., Horn, R., Baerns, M., Scheffler, M., ... & Schomäcker, R. Catalysis Reviews 53.4 (2011) 424-514. https://doi.org/10.1080/01614940.2011.613330

Kim, I., Lee, G., Na, H. B., Ha, J. M., & Jung, J. C . Molecular Catalysis 435 (2017) 13-23. https://doi.org/10.1016/j.mcat.2017.03.012

Li, S., Xu, N., Shi, J., Hu, M. Z. C., & Payzant, E. A . Journal of materials science letters 20.17 (2001) 1631-1633.

https://doi.org/10.1023/A:1017966330832

Lim, S., Choi, J. W., Suh, D. J., Song, K. H., Ham, H. C., & Ha, J. M . Journal of catalysis 375 (2019) 478-492.

https://doi.org/10.1016/j.jcat.2019.04.008

Lim, S., Choi, J. W., Suh, D. J., Song, K. H., Ham, H. C., & Ha, J. M . Catalysis Today 352 (2020) 127-133. https://doi.org/10.1016/j.cattod.2019.11.014

Lim, S., Choi, J. W., Suh, D. J., Lee, U., Song, K. H., & Ha, J. M. Molecular Catalysis 489 (2020) 110925. https://10.1016/j.mcat.2020.110925

Padmini, E., K. Ramachandran. Solid State Communications 302 (2019) 113716. https://doi.org/10.1016/j.ssc.2019.113716

Kumari, V., Yadav, S., Jindal, J., Sharma, S., Kumari, K. and Kumar, N. Advanced Powder Technology (2020). https://doi.org/10.1016/j.apt.2020.04.033

Hsu, K.C., Fang, T.H., Hsiao, Y.J. and Li, Z.J . Journal of Alloys and Compounds (2020) 157014. https://doi.org/10.1016/j.jallcom.2020.157014

Ruan, S., Huang, W., Zhao, M., Song, H. and Gao, Z.. Materials Science in Semiconductor Processing 107 (2020) 104835. https://doi.org/10.1016/j.mssp.2019.104835

Aboul-Fotouh, Sameh MK. Journal of Fuel Chemistry and Technology 42.3 (2014) 350-356. https://doi.org/10.1016/S1872-5813(14)60020-7

Donphai, W., Piriyawate, N., Witoon, T., Jantaratana, P., Varabuntoonvit, V. and Chareonpanich, M.

Journal of CO2 Utilization 16 (2016) 204-211. https://doi.org/10.1016/j.jcou.2016.07.007

Łącz, Agnieszka, and Ewa Drożdż. Journal of Solid State Electrochemistry 23.10 (2019) 2989-2997. https://doi.org/10.1007/s10008-019-04386-3

Kang, R., Ma, P., He, J., Li, H., Bin, F., Wei, X., Dou, B., Hui, K.N. and San Hui, K. Proceedings of the Combustion Institute (2020). https://doi.org/10.1016/j.proci.2020.06.186

Lim, S., Choi, J.W., Suh, D.J., Lee, U., Song, K.H. and Ha, J.M. Applied Cat alysis B: Environmental 264 (2020) 118554. https://doi.org/10.1016/j.apcatb.2019.118554

Beck, B., Fleischer, V., Arndt, S., Hevia, M.G., Urakawa, A., Hugo, P. Schomäcker, R. Catalysis Today 228 (2014) 3w212-218. https://doi.org/10.1016/j.cattod.2013.11.059

Kim, I., Lee, G., Na, H.B., Ha, J.M. Jung, J.C. Molecular Catalysis 435 (2017) 13-23. https://doi.org/10.1016/j.mcat.2017.03.012

Published

30-10-2022

Issue

Section

Full Articles

How to Cite

A comparative study on the catalytic activities of the SrTiO3 perovskite and oxide CuO-ZnO mixed oxides for the oxidative coupling of methane. (2022). Vietnam Journal of Catalysis and Adsorption, 11(3), 114-121. https://doi.org/10.51316/jca.2022.060

Share

Funding data

Similar Articles

1-10 of 116

You may also start an advanced similarity search for this article.