Evaluation of photocatalytic activities in decomposition of methylene blue in aqueous solution of Mn-ZIF-8 and Mn@Zn
DOI:
https://doi.org/10.51316/jca.2021.019Keywords:
Mn-ZIF-8, Mn@Zn, Photocatalyst, Methylene blueAbstract
In the present study, manganese modified zeolitic imidazolate framework-8 (Mn-ZIF-8) and zinc-manganese bimetallic oxides (denoted as Mn@Zn), which was formed by Mn-ZIF-8 heat treatment, had been prepared and applied as photocatalysts to decompose methylene blue (MB) under UV radiation. The influence of manganese content on the structure of ZIF-8, as well as the temperature and heat treatment time of Mn-ZIF-8 material to produce Mn@Zn with high photocatalytic activity was investigated. Results showed that all Mn-ZIF-8 samples have photocatalytic activity, but the MB decomposition efficiency of Mn-ZIF-8 samples were lower than pure ZIF-8. The suitable condition for heat treatment of Mn-ZIF-8 to produce Mn@Zn with high photocatalytic activity was at 500 ºC for 5 hours. However, the MB decomposition efficiency of this sample only reached 22% after 180 minutes of UV radiation.
Downloads
References
H. Hayashi, A. P. Cote, H. Furukawa, M. O’Keeffe, O. M. Yaghi, Nat. Mater. 6 (2007) 501-506. https://doi.org/10.1038/nmat1927
K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 10186-10191. https://doi.org/10.1073/pnas.0602439103
X. C. Huang, Y. Y. Lin, J. P. Zhang, X. M. Chen, Angew. Chem. Int. Ed. 45 (2006) 1557-1559. https://doi.org/10.1002/anie.200503778
Y. He, W. Zhou, G. Qian, B. Chen, Chem. Soc. Rev. 43 (2014) 5657-5678. https://doi.org/10.1039/C4CS00032C
E. Barea, C. Montoro, J. A. R. Navarro, Chem. Soc. Rev. 43 (2014) 5419-5430. https://doi.org/10.1039/C3CS60475F
M. Hu, H. Lou, X. Yan, X. Hu, R. Feng, M. Zhou, Micropor. Mesopor. Mater. 271 (2018) 68-72. https://doi.org/10.1016/j.micromeso.2018.05.048
V. Stavila, A. A. Talin, M. D. Allendorf, Chem. Soc. Rev. 43 (2014) 5994-6010. https://doi.org/10.1039/C4CS00096J
D. Q. Khieu, M. T. Thanh, T. V. Thien, N. H. Phong, D. H. Van, P. D. Du and N. P. Hung, Hindawi J. Chemistry, Volume 2018, Article ID 5395106, 12 pages. https://doi.org/10.1155/2018/5395106
P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couveur, G. Férey, R. E. Morris, C. Serre, Chem. Rev. 112 (2012) 1232-1268. https://doi.org/10.1021/cr200256v
J. Cravillon, S. Munzer, S. J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Chem. Mater. 21 (2009) 1410-1412. https://doi.org/10.1021/cm900166h
D. N. Ta, H. K. D. Nguyen, B. X. Trinh, Q. T. N. Le, H. N. Ta and H. T. Nguyen, The Canadian Journal of Chemical Engineering 96(7) (2018) 1518-1531. https://doi.org/10.1002/cjce.23155
Y. Podkovyrina, V. Butova, E. Bulanova, A. Budnyk, M. Kremennaya, A. Soldatov, C. Lamberti, Journal of Physics: Conf. Series 987 (2018) 012-031. https://iopscience.iop.org/article/10.1088/1742-6596/987/1/012031/meta
M. T. Thanh, T. V. Thien, P. D. Du, N. P. Hung, D. Q. Khieu, J. Porous Mater. 25 (2018) 857-869. https://doi.org/10.1007/s10934-017-0498-7
H. A. Yurtsever, M. Y. Akgunlu, T. Kurt, A. S. Yurttas, B. Topuz, JOTCSA. 3(3) (2016) 265-280. https://doi.org/10.18596/jotcsa.10970
J. Z. Bloh, R. Dillert, D. W. Bahnemann, Environ. Sci. Pollut. Res. 19 (2012) 3688-3695. doi: 10.1007/s11356-012-0932-y
D. Zhang, Rus. J. Phys. Chem. A 86 (2012) 93-99. https://doi.org/10.1134/S0036024412010086
M. Zhu, D. Srinivas, S. Bhogeswararao, P. Ratnasamy, M. A. Carreon, Catal. Commun. 32 (2013) 36-40. https://doi.org/10.1016/j.catcom.2012.12.003