Improving the catalytic activity of Au/SiO2 catalyst in the directly conversion of CO2, C2H4 and H2 using a new dual-reactor concept
DOI:
https://doi.org/10.51316/jca.2020.013Keywords:
Au, SiO2, ethylene, propanal, CO2, propanolAbstract
Directly conversion of CO2 to propanol using C2H4 and H2 had succeeded over Au/SiO2 catalyst in one reactor mode. However, application of new dual-reactor concept enhaned the catalytic activity strongly by using two saparated reactors. To this details, a first reactor is used to convert CO2 to CO through the reverse water gas shift (RWGS) reaction, consecutive hydroformylation of C2H4 with resulting CO and H2 to propanal and finally the hydrogenation of propanal to propanol takes place in a second reactor at a different temperature. The selectivity to oxo products (propanol and propanal) increased from 15% up to 60% while yeild of oxo products improved from 7% to 15% in comparison with the previous publications.Downloads
References
C. Federsel, R. Jackstell, M. Beller, Angew. Chem. 2010, 122, 6392–6395; Angew. Chem. Int. Ed. 2010, 49, 6254–6257. https://doi.org/10.1002/anie.201000533
M. He, Y. Sun, B. Han, Angew. Chem. Int. Ed. 52 (2013) 9620–9633. https://doi.org/10.1002/anie.201209384
Communication from the commission to the European Parliament, the Council, the European economic and social Committee and the Committee of the regions, Energy Roadmap 2050 COM(2011) 885 final, Brussels 2011. https://doi.org/10.1016/j.enpol.2016.10.006
C. Ampelli, S. Perathoner, G. Centi, Phil. Trans. R. Soc. A 2015, 373, 20140177. https://doi.org/10.1098/rsta.2014.0177
E. V. Kondratenko,G. Mul, J. Baltrusaitis, G. O. Larraz´abal´ and J. P.-Ramírez, Energy Environ. Sci., 2013, 6, 3112–3135. https://doi.org/10.1039/C3EE41272E
M. He, Y. Sun, B. Han, Angew. Chem. Int. Ed. 52 (2013) 9620–9633. https://doi.org/10.1002/anie.201209384
H. Balat, Energy Educ. Sci. Tech. 24 (2010) 85–111. https://doi.org/10.1016/B978-0-12-803581-8.11574-7
E. Taarning, C.M. Osmundsen, X.B. Yang, B. Voss, S.I. Andersen, C.H. Christensen, Energy Environ. Sci. 4 (2011) 793–804. https://doi.org/10.1039/C004518G
A. Tanksale, J.N. Beltramini, G.M. Lu, Renew. Sustain. Energy Rev. 14 (2010) 166–182. https://doi.org/10.1016/j.rser.2009.08.010
P.Y. Dapsens, C. Mondelli, J. Pérez-Ramírez, ACS Catal. 2 (2012) 1487–1499. https://doi.org/10.1021/cs300124m
W. Wang, S. Wang, X. Ma, J. Gong, Chem. Soc. Rev. 40 (2011) 3703–3727. https://doi.org/10.1039/C1CS15008A
G. Centi, E.A. Quadrelli, S. Perathoner, Energy Environ. Sci. 6 (2013) 1711–1731. https://doi.org/10.1039/C3EE00056G
S. J. Ahlers, U. Bentrup, D. Linke and E. V. Kondratenko, ChemSusChem, 2014, 7, 2631–2639. https://doi.org/10.1002/cssc.201402212
Ethylene and Propylene Market - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2012 – 2018. Chemicals & Materials Market research report (2018). https://doi.org/10.1016/J.ENG.2017.02.006
S. J. Ahlers, R. Kraehnert, C. Kreyenschulte, M.-M. Pohl, D. Linke and E. V. Kondratenko, Catal. Today, 2015, 258, 684–690. https://doi.org/10.1039/C5CY01425E
S. A. Mavlyankariev, S. J. Ahlers, V. A. Kondratenko, D. Linke, and E. V. Kondratenko, ACS Catal. 2016, 6, 3317 −3325. https://doi.org/10.1021/acscatal.6b00590
S. J. Ahlers, M.-M. Pohl, M. Holena, D. Linke and E. V. Kondratenko, Catal. Sci. Technol., 2016, 6, 2171–2180. https://doi.org/10.1039/C5CY01425E
A. J. Hunt, E. H. K. Sin, R. Marriott, J. H. Clark, ChemSusChem 2010, 3, 306-322. https://doi.org/10.1002/cssc.200900169
A. Otto, T. Grube, S. Schiebahn, D. Stolten, Energy Environ. Sci. 2015, 8, 3283-3297. https://doi.org/10.1039/C5EE02591E
N. von der Assen, P. Voll, M. Peters, A. Bardow, Chem. Soc. Rev. 2014, 43, 7982-7994. https://doi.org/10.1039/C3CS60373C