Syntheses and Characterizations of Platinum Complexes with New Pyrene-based Salicylaldiminato-type Ligand Substituted at 7-Position of Pyrene

Authors

  • Luong Xuan Dien School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author

DOI:

https://doi.org/10.51316/jca.2021.024

Keywords:

Coordination Chemistry, Platinum Complex, Pyrene, π-expanded Ligand, Salicylaldimine

Abstract

Many experimental data show that bulky substituents on the molecules enhance solubility, catalytic activity, and photophysical properties due to the prevention of π-π stacking in metal salicylaldimines. In order to understand the effect of bulkiness of substituents on the properties of the obtained molecules, the author researched and synthesized two new pyrene-based salicylaldiminato-type ligands that were substituted at 7-position and functionalized on imine group with bulky substituents. After the introduction of  the tert-butyl group at 7-position of pyrene by Friedel-Crafts reaction, the syntheses of new ligands 1-hydroxy-2-[((2,6-dimethylphenyl)-imino)methyl]-7-(tert-butyl)-pyrene 3, 2-hydroxy-1- [((2,6-dimethylphenyl)imino)methyl]-7-(tert-butyl)-pyrene 4 and corresponding platinum complexes 3(Pt), 4(Pt) were performed in the different ways with the synthetic processes of the complexes 1(Pt) and 2(Pt). The new ligands and complexes were characterized by 1H NMR, IR spectroscopy, mass spectroscopy, elemental analysis and X-ray diffraction, only for 3(Pt). In addition to measurements of the absorption and emission spectra, TDDFT calculations using the B3LYP functions were also performed. The complexes 3(Pt) and 4(Pt) exhibit good solubility and red-shift in absorption and emission spectra because of tert-butyl group at 7-position of pyrene and extension of the delocalized π-orbitals to the 2,6-dimethylphenyl on imine group. The change of functional groups also induces the upfield shift of the protons affected by ring currents of phenyl groups Ar-3, Ar-4 on imine groups. Introduction of t-butyl groups in pyrene moieties can stabilize radical forms in oxidation processes.

Downloads

Download data is not yet available.

References

K. Li, Y. Chen, W. Lu, N. Zhu, C. M. Che, Chemistry 17 (2011) 4109-4112. https://doi.org/10.1002/-chem.201003606.

J. Ni, Y. G. Wang, J. Y. Wang, Y. Q. Zhao, Y. Z. Pan, H. H. Wang, X. Zhang, J. J. Zhang, Z. N. Chen, Dalton transactions 42 (2013) 13092-13100. https://doi.org/10.1039/C3DT51397A.

D. L. Ma, C. M. Che, Chemistry 9 (2003) 6133-6144. https://doi.org/10.1002/chem.200304964.

P. Wu, E. L.-M. Wong, D.-L. Ma, G. S.-M. Tong, K.-M. Ng, C.-M. Che, Chemistry 15 (2009) 3652-3656. https://doi.org/10.1002/chem.200802707.

T. Zou, J. Liu, C. T. Lum, C. Ma, R. C. Chan, C. N. Lok, W. M. Kwok, C. M. Che, Angewandte Chemie 53 (2014) 10119-10123. https://doi.org/10.1002/-anie.201405384.

K. Li, T. Zou, Y. Chen, X. Guan, C. M. Che, Chemistry 21 (2015) 7441-7453. https://doi.org/-10.1002/chem.201406453.

S. C. Chan, M. C. Chan, Y. Wang, C. M. Che, K. K. Cheung, N. Zhu, Chemistry 7 (2001) 4180-4190. https://doi.org/10.1002/15213765(20011001)7:19%3C4180::AID-CHEM4180%3E3.0.CO;2-9.

H. F. Xiang, S. C. Chan, K. K. Wu, C. M. Che, P. T. Lai, Chemical communications (2005) 1408-1410. https://doi.org/10.1039/B415711G.

G. Cheng, W. Lu, Y. Chen, C. M. Che, Optics letters 37 (2012) 1109-1111. https://doi.org/10.1364-/OL.37.001109.

S. C. Kui, P. K. Chow, G. Cheng, C. C. Kwok, C. L. Kwong, K. H. Low, C. M. Che, Chemical communications 49 (2013) 1497-1499. https://doi.org/10.1039/C2CC37862K.

L. Zhou, C. C. Kwok, G. Cheng, H. Zhang, C. M. Che, Optics letters 38 (2013) 2373-2375. https://doi.org/10.1364/OL.38.002373.

L. Zhou, C. L. Kwong, C. C. Kwok, G. Cheng, H. Zhang, C. M. Che, Chemistry, an Asian journal 9 (2014) 2984-2994. https://doi.org/10.1002-/asia.201402618.

Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, H.; C. Adachi, Appl. Phys. Lett. 86 (2005) 071104. https://doi.org/10.1063/1.1862777.

H. Yersin, Top Curr. Chem. 241 (2004) 1-26. https://link.springer.com/chapter/10.1007/b96858

C. Pan, K. Sugiyasu, Y. Wakayama, A. Sato, M. Takeuchi, Angewandte Chemie 52 (2013) 10775-10779. https://doi.org/10.1002/ange.201305728.

T. M. Figueira-Duarte, K. Mullen, Chemical Reviews 111 (2011) 7260-7314. https://doi.org/10.1021/-cr100428a

J. Howarth, M. B. Majewski, M. O. Wolf, Coordination Chemistry Reviews 282-283 (2015) 139-149. https://doi.org/10.1016/j.ccr.2014.03.024.

L. X. Dien, K. Yamashita, M. S. Asano, K. Sugiura, Inorganica Chimica Acta 432 (2015) 103-108. https://doi.org/10.1016/j.ica.2015.03.038.

L. X. Dien, K. Yamashita, K. Sugiura, Polyhedron 102 (2015) 69-74. https://doi.org/10.1016/j.poly.2015.-07.043.

T. M. Figueira-Duarte, S. C. Simon, M. Wagner, S. I. Druzhinin, K. A. Zachariasse, K. Mullen, Angewandte Chemie 47 (2008) 10175-10178. https://doi.org/-10.1002/anie.200803408.

G. Crawford, Z. Liu, I. A. Mkhalid, M. H. Thibault, N. Schwarz, G. Alcaraz, A. Steffen, J. C. Collings, A. S. Batsanov, J. A. Howard, T. B. Marder, Chemistry 18 (2012) 5022-5035. https://doi.org/10.1002/-chem.201103774.

T. Yamato, A. Miyazawa, M. Tashiro, J. Chem. Soc., Perkin Trans. 1 (1993) 3127-3137. https://doi.org/10.1039/P19930003127.

J.-Y. Hu, A. Paudel, N. Seto, X. Feng, M. Era, T. Matsumoto,c J. Tanaka, M. R. J. Elsegood, C. Redshawe, T. Yamato, Organic & biomolecular chemistry 11 (2013) 2186-2197. https://doi.org/-10.1039/C3OB27320B.

K. Ohsawa, M. Yoshida, T. Doi, The Journal of organic chemistry 78 (2013) 3438-3444. https://doi.org/10.1021/jo400056k.

N. Komiya, M. Okada, K. Fukumoto, D. Jomori, T. Naota, J. Am. Chem. Soc. 133 (2011) 6493-6496. https://doi.org/10.1021/ja110398p.

N. Komiya, N. Itami, T. Naota, Chemistry 19 (2013) 9497-9505. https://doi.org/10.1002/chem.2013010-87.

H. Friebolin, Basic One- and Two-Dimensional NMR Spectroscopy, Fifth Edi., Wiley-VCH, 2010, p. 49.

C. S. Gomes, P. T. Gomes, M. T. Duarte, R. E. Di Paolo, A. L. Macanita, M. J. Calhorda, Inorg. Chem. 48 (2009) 11176. https://doi.org/10.1021/ic901519s.

Y. Shimazaki, T. Yajima, F. Tani, S. Karasawa, K. Fukui, Y. Naruta, O. Yamauchi, J. Am. Chem. Soc. 129(9) (2007) 2559–2568. https://doi.org/10.1021/-ja067022r.

L. Chiang, A. Kochem, O. Jarjayes, T. J. Dunn, H. Vezin, M. Sakaguchi, T. Ogura, M. Orio, Y. Shimazaki, F. Thomas, T. Storr, Chemistry 18 (2012) 14117-14127. https://doi.org/10.1002/chem.201201-410.

L. X. Dien, N. X. Truong, N. D. Quan, K. Yamashita, K. Sugiura, VNU Journal of Science: Natural Sciences and Technology 34(4) (2018) 16-20. https://doi.org/10.25073/25881140/vnunst.4809.

L. X. Dien, N. K. Nga, N. X. Truong, K. Yamashita, K. Sugiura, VNU Journal of Science: Natural Sciences and Technology 35(2) (2019) 98-105. https://doi.org/10.25073/2588-1140/vnunst.4898.

L. X. Dien, N. X. Truong, K. Yamashita, K. Sugiura, VNU Journal of Science: Natural Sciences and Technology 36(2) (2020) 62-76. https://doi.org/-10.25073/25881140/vnunst.4983.

L. X. Dien, N. X. Truong, Crystals, 10(6) (2020) 476-491. https://doi.org/10.3390/cryst10060476.

Published

30-07-2021

Issue

Section

Full Articles

How to Cite

Syntheses and Characterizations of Platinum Complexes with New Pyrene-based Salicylaldiminato-type Ligand Substituted at 7-Position of Pyrene. (2021). Vietnam Journal of Catalysis and Adsorption, 10(2), 26-35. https://doi.org/10.51316/jca.2021.024

Share

Similar Articles

1-10 of 124

You may also start an advanced similarity search for this article.