Modeling biomimetic absorbent compounds for capturing carbon dioxide

Authors

  • Yihan Huang Department of Materials Science and Engineering, University of California, Davis, CA 95616 USA Author
  • Keith J. Bein Air Quality Research Center, University of California, Davis, CA 95616 USA Author
  • Anthony S. Wexler Air Quality Research Center, University of California, Davis, CA 95616 USA | Departments of Mechanial and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, CA 95616 USA Author
  • Roland Faller Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79407 USA Author

DOI:

https://doi.org/10.62239/jca.2024.049

Keywords:

Carbon capture, Molecular Modeling, Biomimetic compunds

Abstract

Carbon capture and storage is a critical component of negative emission technologies for achieving economy-wide carbon neutrality to mitigate climate change and limit global temperature increase. Removal of CO2 can be undertaken after the standard pollution controls. Yet, the separation of CO2 from flue gas via CO2 capture processes is challenging because a high volume of gas must be treated, the CO2 is dilute, the flue gas is at atmospheric pressure, trace impurities can degrade capture media, and the captured CO2 must be compressed. We present a computational study of a novel family of biomimetic materials for such carbon capture processes based on the Crassulacean Acid Metabolism. Phosphoenolpyruvate serves as a template for designing similar molecules for use as CO2 solvents with designed thermochemical properties.

Downloads

Download data is not yet available.

References

Department of Energy NETL. Carbon Dioxide Capture Handbook 2015.

K.. J. Bein, A. S. Wexler. Cost-Effective Carbon Capture Using Chemical Compounds. California Energy Commission 2021

Global CCS Institute. Stateof the Art: CCS Technologies 2022. 2022.

A. N. Dodd, A. M. Borland, R. P. Haslam, H. Griffiths, K. Maxwell, J. Exp. Botany 53 (2002) 569-580. https://doi.org/10.1093/jexbot/53.369.569

A. C. Van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. A 105 (2001) 9396−9409. https://doi.org/10.1021/jp004368u

K. Chenoweth, K.; A. C. Van Duin, A. C., W.A. Goddard, J. Phys. Chem. A 112 (2008) 1040−1053. https://doi.org/10.1021/jp709896w

W. J. Mortier, S.K. Ghosh, S., Shankar, J. Am. Chem. Soc. 108 (1986), 4315−4320. https://doi.org/10.1021/ja00275a013

A. K. Rappe, W. A. Goddard III, J. Phys. Chem. 95 (1991) 3358−3363. https://doi.org/10.1021/j100161a070

B. Zhang, A. C. van Duin, J. K. Johnson, J. Phys. Chem. B 118 (2014) 12008−12016. https://doi.org/10.1021/jp5054277

W. Zhang, A. C. van Duin, J. Phys. Chem. B 121 (2017) 6021−6032. https://doi.org/10.1021/acs.jpcb.7b02548

Y. Huang, A. S. Wexler, K. J. Bein, Roland Faller: J Phys Chem C 126(2022) 9284-9292. https://doi.org/10.1021/acs.jpcc.2c01841

A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in 't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, S. J. Plipton, Comp Phys Comm 271 (2022) 10817. https://doi.org/10.1016/j.cpc.2021.108171

QuantumATK. Viscosity in liquids from molecular dynamics simulations. https://docs.quantumatk.com/tutorials/viscosity_methanol/viscosity_methanol.html#viscosity-in-liquids-from-molecular-dynamics-simulations

M. N. Islam, M. M. Islam, M.N. Yeasmin, J. Chem. l Thermodyn. 36 (2004) 889-893 https://doi.org/10.1016/j.jct.2004.06.004

W. H. Brune. Aqueous Phase Chemistry. Collected Materials for Meteorology 532 – Atmospheric Sciences Penn State 2019

Published

30-09-2024

Issue

Section

GSCE2024

How to Cite

Modeling biomimetic absorbent compounds for capturing carbon dioxide. (2024). Vietnam Journal of Catalysis and Adsorption, 13(3), 1-5. https://doi.org/10.62239/jca.2024.049

Share

Funding data

Similar Articles

1-10 of 68

You may also start an advanced similarity search for this article.