Modeling biomimetic absorbent compounds for capturing carbon dioxide
DOI:
https://doi.org/10.62239/jca.2024.049Keywords:
Carbon capture, Molecular Modeling, Biomimetic compundsAbstract
Carbon capture and storage is a critical component of negative emission technologies for achieving economy-wide carbon neutrality to mitigate climate change and limit global temperature increase. Removal of CO2 can be undertaken after the standard pollution controls. Yet, the separation of CO2 from flue gas via CO2 capture processes is challenging because a high volume of gas must be treated, the CO2 is dilute, the flue gas is at atmospheric pressure, trace impurities can degrade capture media, and the captured CO2 must be compressed. We present a computational study of a novel family of biomimetic materials for such carbon capture processes based on the Crassulacean Acid Metabolism. Phosphoenolpyruvate serves as a template for designing similar molecules for use as CO2 solvents with designed thermochemical properties.
Downloads
References
Department of Energy NETL. Carbon Dioxide Capture Handbook 2015.
K.. J. Bein, A. S. Wexler. Cost-Effective Carbon Capture Using Chemical Compounds. California Energy Commission 2021
Global CCS Institute. Stateof the Art: CCS Technologies 2022. 2022.
A. N. Dodd, A. M. Borland, R. P. Haslam, H. Griffiths, K. Maxwell, J. Exp. Botany 53 (2002) 569-580. https://doi.org/10.1093/jexbot/53.369.569
A. C. Van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. A 105 (2001) 9396−9409. https://doi.org/10.1021/jp004368u
K. Chenoweth, K.; A. C. Van Duin, A. C., W.A. Goddard, J. Phys. Chem. A 112 (2008) 1040−1053. https://doi.org/10.1021/jp709896w
W. J. Mortier, S.K. Ghosh, S., Shankar, J. Am. Chem. Soc. 108 (1986), 4315−4320. https://doi.org/10.1021/ja00275a013
A. K. Rappe, W. A. Goddard III, J. Phys. Chem. 95 (1991) 3358−3363. https://doi.org/10.1021/j100161a070
B. Zhang, A. C. van Duin, J. K. Johnson, J. Phys. Chem. B 118 (2014) 12008−12016. https://doi.org/10.1021/jp5054277
W. Zhang, A. C. van Duin, J. Phys. Chem. B 121 (2017) 6021−6032. https://doi.org/10.1021/acs.jpcb.7b02548
Y. Huang, A. S. Wexler, K. J. Bein, Roland Faller: J Phys Chem C 126(2022) 9284-9292. https://doi.org/10.1021/acs.jpcc.2c01841
A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in 't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, S. J. Plipton, Comp Phys Comm 271 (2022) 10817. https://doi.org/10.1016/j.cpc.2021.108171
QuantumATK. Viscosity in liquids from molecular dynamics simulations. https://docs.quantumatk.com/tutorials/viscosity_methanol/viscosity_methanol.html#viscosity-in-liquids-from-molecular-dynamics-simulations
M. N. Islam, M. M. Islam, M.N. Yeasmin, J. Chem. l Thermodyn. 36 (2004) 889-893 https://doi.org/10.1016/j.jct.2004.06.004
W. H. Brune. Aqueous Phase Chemistry. Collected Materials for Meteorology 532 – Atmospheric Sciences Penn State 2019
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
California Energy Commission
Grant numbers EPC-2015-072 -
Electric Power Research Institute