CO2 adsorption study on ZIF-8
DOI:
https://doi.org/10.62239/jca.2024.086Keywords:
Adsorption, ammonium carbamate, ZIF-8Abstract
This article presents the results for synthesis of ZIF-8 and its CO2 adsorption ability. The material was characterized by XRD, TEM, BET,… ZIF-8 was a porous structure and high BET surface area. ZIF-8 showed great potential for the capture of carbon dioxide, having a capacity of 11,176 mmol/g and the data of CO2 adsorption on ZIF-8 were well fitted to the Langmuir isotherm. The principle mechanism of CO2 adsorption on ZIF-8, simultaneous proton transfer and nucleophilic attack of nitrogen on the CO2 molecules created an ammonium carbamate; after that, the bond for zinc ion with ammonium carbamate was formed. Morever, the interaction of ammonium with carbamate of neighboring ammonium carbamate species also increase CO2 adsorption capacity.
Downloads
References
F. A. Rahman, M.A. Aziz, R. Saidur, W. A. W. A. Bakar, M.R Hainin, R. Putrajaya, N. A. Hassan , Renewable and Sustainable Energy Reviews 71 (2017), 112–126. http://dx.doi.org/10.1016/j.rser.2017.01.011.
Z. Zhanga, Shu-Y. Panb, H. Lic, J. Caid, A. G. Olabie, E. J. Anthonyg, V. Manovic, Renewable and Sustainable Energy Reviews 125 (2020). https://doi.org/10.1016/j.rser.2020.109799
E.I. Koytsoumpa, C. Bergins, E. Kakaras, The Journal of Supercritical Fluids 132 (2018), 3–16 . http://dx.doi.org/10.1016/j.supflu.2017.07.029
J. Zhu, L. Jiang, C. Dai, N. Yang, Z. Lei, Chinese journal of Chemical Engineering 23(2015) 1275 - 1282. https://doi.org/10.1016/j.cjche.2015.01.015
M Zhu, SR Venna, JB Jasinski and M. A.Carreon, Chemistry of Materials 23 (2011) 3590-3592. https://doi.org/10.1021/cm201701f
J.J.Beh, J.K.Lim, E. P.Ng, B.S. Ooi, Materials Chemistry and Physics 216 (2018), 393 - 401. https://doi.org/10.1016/j.matchemphys.2018.06.022
B Ding, H Chen, J Tan, Q Meng, P Zheng, P Ma, J Lin, Angewandte Chemie International Edition, (2023), https://doi.org/10.1002/ange.202215307
S. Sun, Y. He, J. Xu, S. Leng, Y. Liu, H. Wan, L. Yan, Y. Xu. Journal of Controlled Release, 367( 2024), 470-485. https://doi.org/10.1016/j.jconrel.2024.01.057
D.Danaci, R. Singh, P. Xiao, P.A.Webley, Chemical Engineering journal, 280 (2015) 486-493. https://doi.org/10.1016/j.cej.2015.04.090
Z.Zhang, S.Xian, H.Xi, H.Wang, Z.li, Chemical Engineering Science. 66, (2011), 4878-4888. https://doi.org/10.1016/j.ces.2011.06.051
P.Chowdhury, S.Mekala, F. Dreisbach, S.Gumma, Microporous Mesoporous Mater 152(2012) 246-252. https://doi.org/10.1016/j.micromeso.2011.11.022
Q. Qian, P. A. Asinger, M. J. Lee, G.Han, K. M. Rodriguez, S. Lin, F. M. Benedetti, A. X. Wu, W. S. Chi, and Z. P. Smith, Chem. Rev. 120, 16, (2020) 8161–8266. https://doi.org/10.1021/acs.chemrev.0c00119
Thien S. Nguyen, Nesibe A. Dogan, Haeseong Lim, Cafer T. Yavuz, Acc. Chem. Res. 56 (19) (2023) 2642–2652. https://doi.org/10.1021/acs.accounts.3c00367
D. Pereira, R. Fonseca, I. Marin-Montesinos, Current Opinion in Colloid & Interface Science, 64(2023), 1-19. https://doi.org/10.1016/j.cocis.2023.101690
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.