Prediction of FID response factor of pyrolysis bio-oil components by effective carbon number model
DOI:
https://doi.org/10.62239/jca.2024.088Keywords:
FID response factor, oxygenated compounds, bio-oil analysis, ECNAbstract
The analytical characterization of pyrolysis bio-oil represents a formidable challenge, attributed to its complex composition and inherent corrosive properties. Addressing this, we introduce an improved version of Effective Carbon Number (ECN) model, a novel predictive framework designed to accurately estimate the Flame Ionization Detector (FID) response factors of oxygenated compounds within bio-oil based solely on their molecular structures. The ECN model, underpinned by an analysis of over 150 compounds, leverages the structural attributes of molecules to ascertain their respective response factors, thereby facilitating precise concentration measurements. Central to our findings is the model’s ability to correlate FID detector responses directly with two critical parameters: the total number of carbon atoms within the molecule, and the degree of oxidation of each carbon atom. Additionally, we have compiled a comprehensive table delineating response factors across various oxygenated functionalities, a resource that significantly expedites the analysis process of complex bio-oil mixtures.
Downloads
References
D.E. Resasco, S. Crossley, AIChE Journal 55 (2009) 1082. https://doi.org/10.1002/aic.11893
D. Mohan, C.U. Pittman, Jr., P.H. Steele, Energy & Fuels 20 (2006) 848. https://doi.org/10.1021/ef0502397
J.A. Herron, T. Vann, N. Duong, D.E. Resasco, S. Crossley, L.L. Lobban, C.T. Maravelias, Energy Technology 5 (2017) 130. https://doi.org/10.1002/ente.201600147
H. Wang, J. Male, Y. Wang, ACS Catalysis 3 (2013) 1047. https://doi.org/10.1021/cs400069z
J. Wildschut, F.H. Mahfud, R. Venderbosch, H.J. Heeres, Industrial & Engineering Chemistry Research 48 (2009) 10324. https://doi.org/10.1021/IE9006003
E. Butler, G. Devlin, D. Meier, K. McDonnell, Renewable and Sustainable Energy Reviews 15 (2011) 4171. https://doi.org/10.1016/j.rser.2011.07.035
A.V. Bridgwater, Biomass and Bioenergy 38 (2012) 68. https://doi.org/10.1016/j.biombioe.2011.01.048
D. Meier, A. Oasmaa, C. Peacocke, 1997, 391-408. https://doi.org/10.1007/978-94-009-1559-6_31
M. Djokic, M. Dijkmans, G. Yildiz, W. Prins, K. Van Geem, Journal of chromatography. A 1257 (2012) 131. https://doi.org/10.1016/j.chroma.2012.07.035
D. Meier, O. Faix, Bioresource Technology 68 (1999) 71. https://doi.org/10.1016/S0960-8524(98)00086-8
K. Schofield, Progress in Energy and Combustion Science 34 (2008) 330. https://doi.org/10.1016/j.pecs.2007.08.001
J.Y. de Saint Laumer, S. Leocata, E. Tissot, L. Baroux, D.M. Kampf, P. Merle, A. Boschung, M. Seyfried, A. Chaintreau, Journal of separation science 38 (2015) 3209. https://doi.org/10.1002/jssc.201500106
S.S. Jacobsen, C.C. Becker, G. Hølmer, Chemometrics and Intelligent Laboratory Systems 23 (1994) 231. https://doi.org/10.1016/0169-7439(93)E0073-D
D. Singh, A. Chopra, R. Kumar, M.I.S. Sastry, M.B. Patel, B. Basu, Chromatographia 77 (2014) 165. https://doi.org/10.1007/s10337-013-2589-1
E. Cicchetti, P. Merle, A. Chaintreau, Flavour and Fragrance Journal 23 (2008) 450. https://doi.org/10.1002/ffj.1906
J.-Y. de Saint Laumer, E. Cicchetti, P. Merle, J. Egger, A. Chaintreau, Analytical Chemistry 82 (2010) 6457. https://doi.org/10.1021/ac1006574
A.R. Katritzky, E.S. Ignatchenko, R.A. Barcock, V.S. Lobanov, M. Karelson, Analytical Chemistry 66 (1994) 1799. https://doi.org/10.1021/ac00083a005
N. Kretzschmar, M. Seifert, O. Busse, J.J. Weigand, Data 7 (2022) 133. https://doi.org/10.3390/data7090133
E. Tissot, S. Rochat, C. Debonneville, A. Chaintreau, Flavour and Fragrance Journal 27 (2012) 290. https://doi.org/10.1002/ffj.3098
C. Cao, P. Huo, J Chromatogr Sci 45 (2007) 360. https://doi.org/10.1093/chromsci/45.6.360
W.S.G. J.C. Sternberg, D.T.L. Jones, in: J.E.C. N. Brenner, M.D. Weiss (Ed.), Gas Chromatography, New York, NY, Academic Press, 1962, p. 231.
A.D. Jorgensen, K.C. Picel, V.C. Stamoudis, Analytical Chemistry 62 (1990) 683. https://doi.org/10.1021/ac00206a007
F.W. Jones, Journal of Chromatographic Science 36 (1998) 223. 10.1093/chromsci/36.5.223
B. LučIć, N. Trinajstić, S. Sild, M. Karelson, A.R. Katritzky, Journal of Chemical Information and Computer Sciences 39 (1999) 610. https://doi.org/10.1021/ci980161a
W.A. Dietz, Journal of Chromatographic Science 5 (1967) 68-71. https://doi.org/10.1093/chromsci/5.2.68
O. Faix, I. Fortmann, J. Bremer, D. Meier, Holz als Roh- und Werkstoff 49 (1991) 299-304. https://doi.org/10.1007/BF02663795
O. Faix, D. Meier, I. Fortmann, Holz als Roh- und Werkstoff 48 (1990) 351-354. https://doi.org/10.1007/BF02639897
O. Faix, I. Fortmann, J. Bremer, D. Meier, Holz als Roh- und Werkstoff 49 (1991) 213. https://doi.org/10.1007/BF02613278
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.