Studying optical properties of Gd2O3:Eu nanophosphor by Judd-Ofelt theory
DOI:
https://doi.org/10.51316/jca.2023.017Keywords:
Gd2O3:Eu3+, combustion synthesis, nanomaterials, luminescence, Judd Ofelt theoryAbstract
Eu3+doped Gd2O3 nanophosphor were successfully obtained by a straightforward combustion method. The crystal structure and optical characteristics were investigated by methods: XRD, photoluminescence spectra (PL). The XRD result indicates the Gd2O3:5%Eu had cubic phase and the average particle size was about 32 nm. The photoluminescence showed the strong red emission with the 5D0-7F2 electric dipole transition was dominant. The intensities of 5D0-7FJ transitions depended on the symmetry of the local environment of Eu3+ ions and were described using the Judd–Ofelt analysis, using Ω2 and Ω4 intensity parameters derived from emission spectra data analysis. The calculated lifetime value was 1.8 ms and the quantum efficiency was 58,63%.
Downloads
References
Y. Wu, X. Xu, X. You, Q. Xiao, Journal of Rare Earths 38 (2020) 1086-1092. https://doi.org/10.1016/j.jre.2020.01.008
P. T. Lien, N. T. Huong , T. T. Huong, H. T. Khuyen, N. T. N. Anh, N. D. Van, N. N. Tuan, V. X. Nghia, L. Q. Minh, Journal of Nanomaterials (2019) Article ID 3858439. https://doi.org/10.1155/2019/3858439
M. Kumari, S. Mondal, P. K. Sharma, Journal of Alloys and Compounds 776 (2019) 654-665. https://doi.org/10.1016/j.jallcom.2018.10.286
D. Kumar, M. Sharma, O.P. Pandey, AIP Conf. Proc. 1536 (2013) 119–120. https://doi.org/10.1063/1.4810129.
T.R. Jeena, A. Moses Ezhil Raj, M. Bououdina, Mater. Res. Express. 4 (2017) 025019. https://doi.org/10.1088/2053-1591/aa5336.
T. T. D. Hien, P. D. Roan, N. T. Thanh, D. M. Tien, N. Vu, Vietnam J. Chem. 56 (2018) 793-797. https://: 10.1002/vjch.201800089
K.K.M.Ngo, V.Nguyen, T.K.G.Lam, M. Stefanski, K. Grzeszkiewicz, D. Hreniak, Int. J. Nanotechnol., Vol. 17, Nos. 7/8/9/10 (2020) 623-634. https://10.1504/IJNT.2020.111329
P. Li, Y. Liu, Y. Guo, X. Shi, G. Zhu, H. Zuo, Ceramics International 41 (2015) 6620–6630. https://dx.doi.org/10.1016/j.ceramint.2015.01.109
W. Di, X. Wang, B. Chen, H. Lai, X. Zhao, Optical Materials 27 (2005) 1386–1390. doi:10.1016/j.optmat.2004.10.001
D. J. Jovanovic´, Z. Antic´, R. M. Krsmanovic´, M. Mitric´, V. Ðordevic, B. Bártová, Miroslav D. Dramic´anin, Optical Materials 35 (2013) 1797–1804. https://dx.doi.org/10.1016/j.optmat.2013.03.012
N. K. K. Minh, L. T. K, Giang, N. T. Nghia, N. Vu, Vietnam J. Chem 56(6E2) (2018) 300-303.
D. V. Phan, V. X. Quang, H. V. Tuyen, T. Ngoc, V. P. Tuyen, L. D. Thanh, Journal of Luminescence 216 (2019) 116748. https://doi.org/10.1016/j.jlumin.2019.116748
Li. Liu X. Chen, Nanotechnology 18 (2007) 255704. htps://10.1088/0957-4484/18/25/255704
R.G. A. Kumar, S. Hata, K.G. Gopchandran, Ceramics International 39 (2013) 9125–9136. https://dx.doi.org/10.1016/j.ceramint.2013.05.010
L. QingBei, L. JianMing, W. JiHuai, L. Zhang, W. JiangLi, W. Yue, Materials Science 56(28-29) (2011) 3114-3118. https://10.1007/s11434-011-4664-z
N. K. K. Minh, T. B. Luan, L. T. K. Giang, N. T. Thanh, Tran T. K. Chi, D. Hreniak, N. Q. Luan, N. Vu, Materials Transactions 61 No. 8 (2020) 1564-1568. https://10.2320/matertrans.MT-MN2019027
T. T. D. Hiền, P. Đ. Roãn, N. Đ. Hội, N. K. K. Minh, N. Vũ, Vietnam Journal of Catalysis and Adsorption 10(2) (2021) 91-94 https://doi.org/10.51316/jca.2021.034
H. J. Devi, R. S. Loitongbam, W. R. Singh, Materials Research Bulletin 92 (2017) 74–84. https://dx.doi.org/10.1016/j.materresbull.2017.03.056
B. Q. Thanh, T. N. Khiem, N. N. Ha, P. V. Do, J. Lumin. 201 (2018) 129–134. https://doi.org/10.1016/j.jlumin.2018.04.055
Y. Liu, W. Luo, R. Li, G. Liu, M. R. Antonio, X. Chen, J. Phys. Chem. C 112 (2008) 686-694. https://doi.org/10.1021/jp077001z