Synthesis, characterizations and the photocatalytic ability of Co1-xZnxFe2O4 spinels prepared by combustion method
DOI:
https://doi.org/10.51316/jca.2021.130Keywords:
Co1-xZnxFe2O4, combustion method, spinel ferrites, nanomaterials, photocatalystsAbstract
In this research, Co1-xZnxFe2O4 (x=0-0,5) spinel ferrites were synthesized at 5000C by combustion method using glycine and metal nitrates. The powder samples were characterized by thermogravimetric and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX). X-ray analysis showed that all samples have single phase cubic spinel structure. Structural parameters of spinels were also determined from XRD datas. The lattice constants, cell volumes increased with the increase in zinc substitution. The average crystallite sizes of the particles were determined with Zn content from 11 to 16 nm. The TEM images reveals the spherical shapes of nanoparticles with an average particle size less than 20 nm. The photocatalytic activity of the spinels were tested by the degradation of methylene blue (MB) in aqueous solution under visible light. The results showed that Zn doped spinels exhibited higher photocatalytic activity than CoFe2O4. Among all the samples, the maximum degradation efficiency was achieved by the 0.4 Zn substituted cobalt ferrite.
Downloads
References
T.R. Simbolon, T. Sembiring, M. Hamid, D. A. Hutajulu, M. Rianna, A.M.S Sebayang, A.P Tetuko, E.A. Setiadi, Ginting M. and Sebayang P., Journal of Aceh Physics Society 10(2) (2021) 32-35. https://doi.org/10.24815/jacps.v10i2.18710
Mariosi F.R., Venturini J., da Cas Viegas A. and Bergmann C. P., Ceramics International 46(3) (2020) 2772-2779. https://doi.org/10.1016/j.ceramint.2019.09.266
Darvina Y., and Desnita D., Pillar of Physics 12(2) (2019) 91-97.
http://dx.doi.org/10.24036/6915171074
Asri N. S., Journal of Technomaterials Physics 3(1) (2021) 21-28.
https://doi.org/10.32734/jotp.v3i1.5548
Somvanshi S. B., Jadhav S. A., Khedkar M. V., Kharat P. B., More S. D., and Jadhav K. M., Ceramics International 46(9) (2020) 13170-13179. https://doi.org/10.1016/j.ceramint.2020.02.091
Aziz H.S., Khan R.A., Shah F., Ismail B., Nisar J., Shah S.M., Rahim A. and Khan A. R., Materials Science and Engineering: B 243 (2019) 47-53. https://doi.org/10.1016/j.mseb.2019.03.021
Nguyen Xuan Dung, Phan Thi Minh Huyen, Luu Tien Hung, Steffen Schulze, and Michael Hietschold, International Journal of Nanotechnology 15(1-3) (2018) 233-241. https://doi.org/10.1504/IJNT.2018.089571
Lưu Minh Đại and Nguyễn Xuân Dũng, Tạp chí hoá học 48(1) (2010) 18-23.
Kefeni K. K., and Bhekie B. M., Sustainable Materials and Technologies 23 (2020) e00140. https://doi.org/10.1016/j.susmat.2019.e00140
Kefeni K. K., Mamba B. B., and Msagati T. A., Separation and Purification Technology 188 (2017) 399-422. https://doi.org/10.1016/j.seppur.2017.07.015
Sharma N. D. Verma M. K., Choudhary N., Sharma S. and Singh D., Materials Science and Technology 35(4) (2019) 448-455. https://doi.org/10.1080/02670836.2019.1569836
Khaliullin S. M., Zhuravlev V. D., and Bamburov V. G., International Journal of Self-Propagating High-Temperature Synthesis 25(3) (2016) 139-148. https://doi.org/10.3103/S1061386216030031
Setiyani R. I., Yofentina I., and Budi P., Trans. Tech. Publications Ltd, 2020, 855.
Vinuthna C. H., Ravinder D., Madhusudan R., and Ravinder D., International Journal of Engineering Research and Applications 3(6) (2013) 654-660.
Naik M. M., Naik H. B., Nagaraju G., Vinuth M., Vinu K., and Viswanath R, Nano-Structures & Nano-Objects 19 (2019) 100322. https://doi.org/10.1016/j.nanoso.2019.100322