Synthesis and ability to detect Fe3+ ion of N-doped Graphene Quantum Dots materials
DOI:
https://doi.org/10.51316/jca.2022.073Keywords:
Nitrogen-doped graphene quantum dots, Fe3+, Hydrothermal methodAbstract
In this study, nitrogen-doped graphene quantum dots (N-GQDs) were successfully synthesized by hydrothermal method. The morphology and adsorption properties of samples were studied through high resolution transmission electron microscopy (HR-TEM) and UV-Vis absorption spectra. The UV-Vis absorption spectra showed that the typical absorption peaks at 234 nm and 342 nm and 640 nm were characteristic of the N-GQDs materials. HR-TEM image showed that the average size of N-GQDs is about 5 nm. Compared with the absorption peak at 342 nm (strongest absorption peak) of N-GQDs, the absorption peak of N-GQDs·Fe3+ shift towards lower wavelengths at 295 nm, which is due to the complexation between hydroxyl, carboxyl, pyridinic nitrogengroups of the N-GQDs and Fe3+ ions. These results indicated that the N-GQDs materials could have potential application for detecte Fe3+ in the water.
Downloads
References
L. Silva, A. Melo and A. Salgado, Biosensors for Environmental Applications, IntechOpen, 2011.
A. Singh, R.K. Sharma, M. Agrawal, F.M. Marshall, Food Chem. Toxicol. 48 (2010) 611–619. https://10.1016/j.fct.2009.11.041
A.T. Jan, M. Azam, K. Siddiqui, A. Ali, I. Choi, Q.M.R. Haq, Int. J. Mol. Sci. 16 (2015) 29592–29630. https://10.3390/ijms161226183
M. Jaishankar, T. Tseten, N. Anbalagan, B. Mathew, N. Beeregowda, Interdiscip Toxicol. 7 (2014) 60–72. https://10.2478/intox-2014-0009
G.C. Lough, J.J. Schauer, J.-S. Park, M.M. Shafer, J.T. Deminter, J.P. Weinstein, Environ. Sci. Technol. 39 (2005) 826–836. https://10.1021/es048715f
J. Briffa, E. Sinagra, R. Blundell, Heliyon 6 (2020), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
G. Kinuthia, V. Ngure, D. Beti, R. Lugalia, A. Wangila & L. Kamau, Scientific Reports. 10 (2020) 8434. https://doi.org/10.1038/s41598-020-65359-5.
A. Arruti, I. Fernández-Olmo, A. Irabien, J. Environ. Monit. 12 (2010) 1451–1458. https://10.1039/b926740a
H. Hussein, et al. Process Bio chem. 40 (2) (2005) 955–961. https://10.1016/j.procbio.2004.04.001
X. Yang, Y. Feng, Z. He, P.J. Stoffella, J. Trace Elem. Med. Biol. 18 (2005) 339–353. https://10.1016/j.jtemb.2005.02.007
R. Kunkel, S.E. Manahan, Anal. Chem. 45 (8) (1973) 1465–1468. https://10.1021/ac60330a024
S. Caroli, et al., Talanta 50 (2) (1999) 327–336. https://10.1016/s0039-9140(99)00025-9
E. Bakker, Y. Qin, Anal. Chem. 78 (12) (2006) 3965–3984. https://doi.org/10.1021/ac060637m
B.J. Privett, J.H. Shin, M.H. Schoenfisch, Anal. Chem. 80 (12) (2008) 4499–4517. https://10.1021/ac101075n
A.M. Simões Da Costa, I. Delgadillo, A. Rudnitskaya, Talanta 129 (2014) 63–71. https://10.1016/j.talanta.2014.04.030
T. Alizadeh, M.R. Ganjali, M. Zare, Anal. Chim. Acta 689 (2011) 52–59. https:10.1016/j.aca.2011.01.036
H.N. Kim, W.X. Ren, J.S. Kim, J. Yoon, Chem. Soc. Rev. 41 (2012) 3210–3244. https://doi.org/10.1039/C1CS15245A
Y.-F. Zhu, Y.-S. Wang, B. Zhou, J.-H. Yu, L.-L. Peng, Y.-Q. Huang, X.-J. Li, S.-H. Chen, X. Tang, X.-F. Wang, Anal. Bioanal. Chem. 409 (2017) 4951–4958. https://10.1007/s00216-017-0436-1
M. Caselli, RSC Adv. 5 (2015) 1350–1358. https://doi.org/10.1039/C4RA09814E
J.-L. He, S.-L. Zhu, P. Wu, P.-P. Li, T. Li, Z. Cao, Biosens. Bioelectron. 60 (2014) 112–117. https://10.1016/j.bios.2014.03.065
S. Cai, Y. Lu, S. He, F. Wei, L. Zhao, X. Zeng, Chem. Commun. 49 (2013) 822–824. https://doi.org/10.1039/C2CC37746B
J. Yang, Z. Wang, Y. Li, Q. Zhuang, W. Zhao, J. Gu, RSC Adv. 6 (2016) 69807–69814. https://doi.org/10.1039/C6RA13766K
H. Xu, R. Miao, Z. Fang, X. Zhong, Anal. Chim. Acta 687 (2011) 82–88. https://10.1016/j.aca.2010.12.002
F. Wu, H. Su, K. Wang, W.-K. Wong, X. Zhu, Int.J. Nanomed. 12 (2017) 7375–7391. https://doi.org/10.2147/IJN.S147165
E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, Y. Kim, Adv. Mater. 22 (2010) 3076–3080. https://10.1002/adma.201000525
V. Renugopalakrishnan, B. Barbiellini, C. King, M. Molinari, K. Mochalov, A. Sukha nova, I. Nabiev, P. Fojan, H.L. Tuller, M. Chin, et al. J. Phys. Chem. C 118 (2014) 16710– 16717. https://doi.org/10.1021/jp502885s
E. Mohamed Ali, et al. Anal. Chem. 79 (24) (2007) 9452–9458. https: 10.1021/ac071074x
Z.S. Qian, X.Y. Shan, L.J. Chai, J.J. Ma, J.R. Chen, H. Feng, Nanoscale 6 (2014) 5671–5674. https://doi.org/10.1039/C3NR06583A
X. Ran, H. Sun, F. Pu, J. Ren, X. Qu, Chem. Commun. 49 (2013) 1079–1081. https://doi.org/10.1039/C2CC38403E
I. Al-Ogaidi, H. Gou, Z.P. Aguilar, S. Guo, A.K. Melconian, A.K. Al-kazaz, F. Meng, N. Wu, Chem. Commun. 50 (2014) 1344–1346. https://doi.org/10.1039/C3CC47701K
S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Chem. Commun. 47 (2011) 6858–6860. https://doi.org/10.1039/C1CC11122A
Q. Liu, B.D. Guo, Z.Y. Rao, B.H. Zhang, J.R. Gong, Nano Lett. 13 (2013) 2436–2441. https://doi.org/10.1021/nl400368v
X.M. Li, S.P. Lau, L.B. Tang, R.B. Ji, P.Z. Yang, J. Mater. Chem. C 1 (2013) 7308–7313. https://doi.org/10.1039/C3TC31473A
L.L. Li, J. Ji, R. Fei, C.Z. Wang, Q. Lu, J.R. Zhang, L.P. Jiang, J.J. Zhu, Adv. Funct. Mater. 22 (2012) 2971–2979. https://doi.org/10.1002/adfm.201200166
L.B. Tang, R.B. Ji, X.M. Li, K.S. Teng, S.P. Lau, J. Mater. Chem. C 1 (2013) 4908–4915. https://doi.org/10.1039/C3TC30877D
R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, Nat. Mater. 9 (2010) 315– 319. https://10.1038/nmat2710
K. Gopalakrishnan, K.S. Subrahmanyam, P. Kumar, A. Govindaraj, C.N.R. Rao, RSC Adv. 2 (2012) 1605–1608. https://doi.org/10.1039/C1RA00403D
R.R. Nair, W. Ren, R. Jalil, I. Riaz, V.G. Kravets, L. Britnell, Small 6 (2010) 2877–2884. https://10.1002/smll.201001555
X.M. Li, S.P. Lau, L.B. Tang, R.B. Ji, P.Z. Yang, Nanoscale 6 (2014) 5323–5328. https://doi.org/10.1039/C4NR00693C
F. Li, C.J. Liu, J. Yang, Z. Wang, W.G. Liu, F. Tian, RSC Adv. 4 (2014) 3201–3205. https://doi.org/10.1039/C3RA43826K
Y. Wang, Y.Y. Shao, D.W. Matson, J.H. Li, Y.H. Lin, ACS Nano 4 (2010) 1790–1798. https://doi.org/10.1021/nn100315s
M. Li, W.B. Wu, W.C. Ren, H.M. Cheng, N.J. Tang, W. Zhong, Appl. Phy. Lett. 101 (2012) 103107. https://doi.org/10.1063/1.4750065
C.F. Hu, Y.L. Liu, Y.H. Yang, J.H. Cui, Z.R. Huang, Y.L. Wang, J. Mater. Chem. B 1 (2013) 39–42. https://doi.org/10.1039/C2TB00189F
B. Park, S.J. Kim, J.S. Sohn, M.S. Nam, S. Kang, S.C. Jun, Nano Res. 9 (2016) 1866–1875. https://doi.org/10.1007/s12274-016-1079-9
K. Takemura, O. Adegoke, N. Takahashi, T. Kato, T.-C. Li, N. Kitamoto, T. Tanaka, T. Suzuki, E.Y. Park, Biosens. Bioelectron. 89 (2017) 998–1005. https://10.1016/j.bios.2016.10.045
L. Tang, R. Ji, X. Li, G. Bai, C.P. Liu, J. Hao, J. Lin, H. Jiang, K.S. Teng, Z. Yang, ACS Nano 8 (2014) 6312–6320. https://10.1021/nn501796r
Z. Luo, P.M. Vora, E.J. Mele, A.C. Johnson, J.M. Kikkawa, Appl. Phys. Lett. 94 (2009) 111909. https://doi.org/10.1063/1.3098358
X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Res. 1 (2008) 203–212. https://10.1007/s12274-008-8021-8
Y.H. Liu, W.X. Duan, W. Song, J.J. Liu, C.L. Ren, J. Wu, D. Liu, H.L. Chen, ACS Appl. Mater. Interfaces 9 (2017) 12663–12672. https://10.1021/acsami.6b15746
C.P. Han, R. Wang, K.Y. Wang, H.T. Xu, M.R. Sui, J.J. Li, K. Xu, Biosens. Bioelectron. 83 (2016) 229–236. https://10.1016/j.bios.2016.04.066
Xu Zhou & Genfu Zhao & Xiaoping Tan & Xingcan Qian & Ting Zhang & Jingwei Gui & Long Yang & Xiaoguang Xie, Mikrochim Acta. 9 (2019) 67. https://10.1007/s00604-018-3176-9