Synthesis, structure and anticancer activities of Zn(II), Cd(II) complexes with 5,7-dichloro-8-hydroxyquinoline-2-carboxaldehyde-4-methyl-3-thiosemicarbazone
DOI:
https://doi.org/10.51316/jca.2021.107Keywords:
Structure, Zn(II), Cd(II) complexes, 5,7-dichloro-8-hydroxyquinoline-2-carboxaldehyde-4-methyl-3-thiosemicarbazone, anticancerAbstract
Two new complexes [Zn(QMS)] and [Cd(QMS)] were synthesized by reaction between MCl2 (M = Zn, Cd) with 5,7-dichloro-8-hydroxyquinoline-2-carboxaldehyde-4-methyl-3-thiosemicarbazone (H2QMS). Their structures were determined by ESI-MS, IR and 1H NMR spectroscopies. The results showed that in these complexes the ratio of M(II) : H2QMS ligand is 1 : 1, M(II) is bound to H2QMS ligand through O, Nquinoline, Nthiosemicarbazide and S atoms. The complexes were tested for cell in vitro cytotoxicity on human cancer cells including KB, Hep-G2, LU and MCF-7. The results showed that ZnQMS complex exhibits high antitumor activities on KB, Hep-G2, Lu cancer cell lines with IC50 values 9,41; 5,53 and 6,73 μM respectively. CdQMS complex gives a high activity against on LU cancer cell line with IC50 value 4,54 μM.
Downloads
References
L. T. H. Hai, N. T. N. Vinh, L. T. Tuyen, L. V. Meervelt, T. T. Da, Journal of Coordination Chemistry 72 (2019) 1637-1651. https://doi.org/10.1080/00958972.2019.1608359
N. T. T. Chi, T. T. C. Mai, P. V Thong, N. Long, N. H My and L. V. Meervelt, Acta Cryst. C73 (2017) 1030–1037. https://doi.org/10.1107/S2053229617015200
D. Rogolino, A. Cavazzoni, A. Gatti, M. Tegoni, G. Pelosi,V. Verdolino, European Journal of Medicinal Chemistry 128 (2017) 140–153. https://doi.org/10.1016/j.ejmech.2017.01.031
C. Molinaro, A. Martoriati, L. Pelinski and K. Cailliau, Cancers 12 (2020), 2863. https://doi.org/10.3390/cancers12102863
A. Kotian, V. Kamat, K. Naik, D. G. Kokare, K. Kumara, K. L. Neratur, V. Kumbar, K. Bhat, V. K. Revankar, Bioorganic Chemisty 112 (2021) 104962. https://doi.org/10.1016/j.bioorg.2021.104962
S. A. Andres, K. Bajaj, N. S. Vishnosky, M. A. Peterson, M. S. Mashuta, R. M. Buchanan, P. J. Bates and C. A. Grapperhaus, Inorganic Chemistry 59 (2020) 4924–4935. https://doi.org/10.1021/acs.inorgchem.0c00182
S. H. Chan, C. H. Chui, S. W. Chan, S. H. L. Kok , D. Chan, M. Y. T. Tsoi, P. H. M. Leung, A. K. Y. Lam, A. S. C. Chan, K. H. Lam, J. C. O. Tang, ACS Med. Chem. Lett 4 (2013) 170–174. https://doi.org/10.1021/ml300238z
S. Rubino, R. Busà, A. Attanzio, R. Alduina, V. D. Stefano, M. A. Girasolo, S. Orecchio, L. Tesoriere, Bioorganic & Medicinal Chemistry 25 (2017) 2378–2386.
https://doi.org/10.1016/j.bmc.2017.02.067
F. Liu, Z. Zhou, S. Gou, J. Zhao, F. Chen, Journal of Coordination Chemistry 67 (2014) 2858–2866. https://doi.org/10.1080/00958972.2014.951638