Insight into structure, stability and hydrogen bond in complexes of guanine and thymine at the molecular level using computational chemical method
DOI:
https://doi.org/10.51316/jca.2022.020Keywords:
guanine, thymine, SAPT2+, red-shifting hydrogen bondAbstract
Nine stable structures of complexes formed by interaction of guanine with thymine were located on potential energy surface at B3LYP/6-311++G(2d,2p). The complexes are quite stable with interaction energy from -5,8 to -17,7 kcal.mol-1. Strength of complexes are contributed by hydrogen bonds, in which a pivotal role of N−H×××O/N overcoming C−H×××O/N hydrogen bond, up to to 3.5 times, determines stabilization of complexes investigated. It is found that polarity of N/C−H covalent bond over proton affinity of N/O site governs stability of hydrogen bond in the complexes. The obtained results show that the N/C−H×××O/N red-shifting hydrogen bonds occur in all complexes, and a larger magnitude of an elongation of N−H compared C-H bond length accompanied by a decrease of its stretching frequency is detected in the N/C−H×××O/N hydrogen bond upon complexation. The SAPT2+ analysis indicates the substantial contribution of attractive electrostatic energy versus the induction and dispersion terms in stabilizing the complexes.
Downloads
References
J.K. Sanders, VonJ.-M. Lehn, Angew. Chem., 107(21) (1995) 2617. https://doi.org/10.1002/ange.19951072130
Ilya.G. Kaplan, Wiley, Hoboken, NJ, Physics Today, 60(7) (2006) 64. https://doi.org/10.1063/1.2761808
R. E. Plata ,D. E. Hill, B. E. Haines, D. G. Musaev, L. Chu, D. P. Hickey, M. S. Sigman, J-Q. Yu, D. G. Blackmond, J. Am. Chem. Soc., 139(27) (2017) 9238-9245. https://doi.org/10.1021/jacs.7b03716
I. Dabkowska, P. Jurecka, P. Hobza, J. Chem. Phys., 122(20) (2005) 204322 (1-9 pages). https://doi.org/10.1063/1.1906205
O.V. Shishkin, G.V. Palamarchuk, L. Gorb, J. Leszczynski, J. Phys. Chem. B, 110(9) (2006) 4413–4422. https://doi.org/10.1021/jp056902+
G. Trudeau, J.M. Dumas, P. Dupuis, M. Guerin, C. Sandorfy, Top. Curr. Chem., 93, (1980) 91–125. https://doi.org/10.1007/3-540-10058-x_9
B. Behera, P. K. Das, J. Phys. Chem. A, 123, (2019) 1830-1839. https://doi.org/10.1021/acs.jpca.8b12200
B. J.Van der Veken, W. A. Herrebout, R. Szostak, D. N. Shchepkin, Z. Havlas, P. Hobza, J. Am. Chem. Soc., 123, (2001) 12290-12293. https://doi.org/10.1021/ja010915t
J. Joseph, E.D. Jemmis, J. Am. Chem. Soc., 129(15) (2007) 4620-4632. https://doi.org/10.1021/ja067545z
N. T. Trung, N. P. Hung, T. T. Hue, M. T. Nguyen, Phys. Chem. Chem. Phys., 13(31) (2011) 14033-14042. https://doi.org/10.1039/c1cp20533a
S. J. Grabowski, Hydrogen bonding: new insights, Springer, 2006.
Y. Mandel-Gutfreund, H. Margalit, R.L. Jernigan, V.B. Zhurkin, J. Mol. Biol., 277(5) (1998) 1129-1140. https://doi.org/10.1006/jmbi.1998.1660
J. J. J. Dom, B. Michielsen, B.U.W. Maes, W.A. Herrebout, B.J. van der Veken, Chem. Phys. Lett., 469, (2009) 85-89. https://doi.org/10.1016/j.cplett.2008.12.038
J.M. Hermida-Ramon, A.M. Grana, J. Comput. Chem., 28(2) (2006) 540-546. https://doi.org/10.1002/jcc.20568
C.D. Keefe, M. Isenor, J. Phys. Chem. A, 112(14) (2008) 3127-3132. https://doi.org/10.1021/jp076563f
E.T. Kool, Annu. Rev. Biophys. Biomol. Struct., 30(1) (2001) 1–22. https://doi.org/10.1146/annurev.biophys.30.1.1
T.E. Barrett, R. Savva, G. Panayotou, T. Barlow, T. Brown, J. Jiricny, L.H. Pearl, Cell, 92(1) (1998) 117–129. https://doi.org/10.1016/S0092-8674(00)80904-6
J.C. Huang, D.L. Svoboda, J.T. Reardon, A. Sancar, Proc. Natl. Acad. Sci. USA, 89(8) (1992) 3664-3668. https://www.pnas.org/content/89/8/3664
A.S. Bhagwat, W. Hao, J.P. Townes, H. Lee, H. Tang, P.L. Foster, Proc. Natl. Acad. Sci. USA, 113(8) (2016) 2176–2181. https://doi.org/10.1073/pnas.1522325113
M. Furukawa, H. Tanaka, T. Kawai, J. Chem. Phys., 115(7) (2001) 3419–3423. https://doi.org/10.1063/1.1384551
S.C. León, M. Prentiss, M. Fyta, Phys. Rev. E, 93(6) (2016) 062410. https://doi.org/10.1103/PhysRevE.93.062410
M. O. Platonov, S. P. Samijlenko, O. O. Sudakov, J. V. Kondratyuk and D. M. Hovorun, Spectrochim Acta A Mol Biomol Spectrosc, 62, (2005) 112-114. https://doi.org/10.1016/j.saa.2004.12.012
B. van Loon, E. Markkanen and U. Hubscher, DNA Repair (Amst) 9, (2010) 604-616. https://doi.org/10.1016/j.dnarep.2010.03.004
A. Ghosh, M. Bansal , J. Mol. Biol, 294, (1999) 1149-1158. https://doi.org/10.1006/jmbi.1999.3323
V. H. Tu, N. T. T. Trang, N. T. Trung, Nghiên cứu lý thuyết tương tác giữa cytosine−guanine: cấu trúc, độ bền và liên kết hidro, Tạp chí hóa học, 54(5e1,2) (2016) 160-165.
M. Jawiczuk, Computational and Theoretical Chemistry, 1123, (2018) 26–34. https://doi.org/10.1016/j.comptc.2017.11.009
D. T. T. Huong, P. N. Khanh, V. T. Ngan, N. T. Trung, Nghiên cứu cấu trúc hình học, độ bền và liên kết hydro của tương tác guanine với guanine bằng phương pháp hóa học lượng tử, Tạp chí hóa học, 55(3e12) (2017) 44-49.
R.R. Toczyłowski, S.M. Cybulski, J. Phys. Chem. A, 107(3) (2003) 418–426. https://doi.org/10.1021/jp021805r
G. A. Jeffrey, An introduction to hydrogen bonding, 1st ed., Oxford university press: New York, NY, 1997, 184.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Pople, Gaussian 09 (Revision B.01) Wallingford CT, 2009.
P. L. A. Popelier, Atoms in Molecules, Pearson Education Ltd: Essex, UK, 2000.
E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 285, (1998) 170-173. https://doi.org/10.1016/S0009-2614(98)00036-0
A. J. Misquitta, R. Podeszwa, B.Jeziorski, and K. Szalewicz, J. Chem. Phy., 123, (2005) 214103. https://doi.org/10.1063/1.2135288
J.M. Turney, A.C. Simmonett, R.M. Parrish, E.G. Hohenstein, F.A. Evangelista, J.T. Fermann, B.J. Mintz, L.A. Burns, J.J. Wilke, M.L. Abrams, N.J. Russ, M.L. Leininger, C.L. Janssen, E.T. Seidl, Q.D. Allen, H.F. Schaefer, R.A. King, E.F. Valeev, C.D. Sherrill, T.D. Crawford, WIREs. Comput. Mol. Sci., 2(4) (2011) 556-565. https://doi.org/10.1002/wcms.93
U. Koch and P. L. A. Popelier, J. Phys. Chem., 99, (1995) 9747-9754. https://doi.org/10.1021/j100024a016
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 104.06-2020.28