The influence of ultrasonic spray technology parameters on the electrochemical characterization of the catalyst layer directly sprayed onto the diffusion layer in membrane electrode assembly (MEA)

Authors

  • Giang Hong Thai Institute of Materials Science, Vietnam Academy of Science and Technology Author
  • Nguyen Duc Lam Institute of Materials Science, Vietnam Academy of Science and Technology Author
  • Ngo Thi Anh Tuyet Institute of Materials Science, Vietnam Academy of Science and Technology Author
  • Do Chi Linh Institute of Materials Science, Vietnam Academy of Science and Technology Author
  • Pham Hong Hanh Institute of Materials Science, Vietnam Academy of Science and Technology Author
  • Bui Thi Hoa Institute of Materials Science, Vietnam Academy of Science and Technology Author
  • Pham Thy San Institute of Materials Science, Vietnam Academy of Science and Technology Author

DOI:

https://doi.org/10.62239/jca.2024.079

Keywords:

Catalyst layer, ultrasonic spraying, PEMFC, CV, MEA

Abstract

In PEMFC fuel cells, the catalyst layer plays a crucial role, significantly influencing the characteristics of the fuel cell. Various methods for fabricating this catalyst layer, such as brushing, decanting, and spraying, are employed. In this report, the method of fabricating the catalyst layer by directly spraying the catalyst onto the gas diffusion layer with an ultrasonic spraying device is implemented. The impact of some spraying parameters, such as solvent ratio and spraying rate, on the electrochemical activity of the catalyst layer is investigated. The electrochemical properties are evaluated using techniques such as LSV and CV. The uniformity and surface morphology of the catalyst layer are assessed using optical microscopy. The electrical properties of the catalyst layer are assessed through the employment of I-V curve measurements. The results are discussed and indicate that the spraying mode gives a high-quality catalyst layer at a solvent dilution ratio of 60% of the initial catalytic ink solution and a spraying rate of 1.5 ml/min. And this mode is applied to fabricate the catalytic layer for PEMFC fuel cells.

Downloads

Download data is not yet available.

References

Massoud, M., et al., Heliyon, 9(4) 2023 15107. https://doi.org/10.1016/j.heliyon.2023.e15107

Rahim Malik, F., et al., Engineering Science and Technology, an International Journal, 43 (2023) 101452. https://doi.org/10.1016/j.jestch.2023.101452

Zhang, J., PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications 2008: Spinger.

K.D. Beard, M.T.S., J.W. Van Zee, J.R. Monnier, Applied Catalysis B: Environmental, 72 (2007) 262–271. https://doi.org/10.1016/j.apcatb.2006.11.006.

I.S. Park, L. Wen, M. Arumugam, Journal of Power Sources, 195 (2010) 7078–7082. https://doi.org/10.1016/j.jpowsour.2010.05.004

C.-L. Chang, T.-C. Chang, W.-Y. Ho, J.J. Hwang, D.-Y. Wang, Surface & Coatings Technology, 201 (2006) 4442–4446. https://doi.org/10.1016/j.surfcoat.2006.08.036

B. Millington, W. Vincent, P.G. Bruno, Journal of Power Sources 196 (2011) 8500–8508. https://doi.org/10.1016/J.JPOWSOUR.2011.06.024

S. Shukla, K.D., K. Karan, S. Bhattacharjee, and M. Secanell, Electrochim. Acta 156 (2014) 289–300. https://doi.org/10.1016/j.electacta.2015.01.028.

I. Fouzaï, S.G., V. C. Bassetto, W. O. Silva, R. Maher, and H. H. Girault, J. Mater. Chem. A, 9(18) (2021) 11096–11123. https://doi.org/10.1039/d0ta07470e

S. Thanasilp, M. Hunsom, Fuel, 89 (2010) 3847–3852. https://doi.org/10.1016/j.fuel.2010.07.008

M. B. Sassin, Y.G., R. W. Atkinson, R. M. E. Hjelm, and K. E. Swider-Lyons, Int. J. Hydrogen Energy 44(31) (2019) 16944–16955. https://doi.org/10.1016/j.ijhydene.2019.04.194

T. H. Huang, H.L.S., T. C. Jao, F. B. Weng, and A. Su, Int. J. Hydrogen Energy 37(18) (2012) 13872–13879. https://doi.org/10.1016/j.ijhydene.2012.04.108

S. A. Mauger, J.R.P., M. Wang, S. Medina, A. C. Yang-Neyerlin, K. C. and C.S. Neyerlin, S. Pylypenko, and M. Ulsh, J. Power Sources 450 (2020) 227581. https://doi.org/10.1016/j.jpowsour.2019.227581

McLean, S.L.a.G., 130(1-2) (2004) 61–76. https://doi.org/10.1016/j.jpowsour.2003.12.055

W. Wang, S. Chen, J. Li, W. Wang, Int. J. Hydrogen Energy, 40(13) (2015) 4649–4658. https://doi.org/10.1016/j.ijhydene.2015.02.027

S. Kundu, M.W. Fowler, L.C. Simon, S. Grot, J. Power Sources 157 (2006) 650–656. https://doi.org/10.1016/j.jpowsour.2005.12.027

R.T. White, A. Wu, M. Najm, F.P. Orfino, M. Dutta, E. Kjeang, Journal of Power Sources 350 (2017) 94–102. https://doi.org/10.1016/j.jpowsour.2017.03.058

R. Liu et al., Current Applied Physics 20(1) (2020) 11–17. https://doi.org/10.1016/j.cap.2019.09.016

Published

30-12-2024

Issue

Section

Full Articles

How to Cite

The influence of ultrasonic spray technology parameters on the electrochemical characterization of the catalyst layer directly sprayed onto the diffusion layer in membrane electrode assembly (MEA). (2024). Vietnam Journal of Catalysis and Adsorption, 13(4), 85-90. https://doi.org/10.62239/jca.2024.079

Share

Similar Articles

1-10 of 149

You may also start an advanced similarity search for this article.