Effect of Ion Exchange Times on the Morphology and Catalytic Activity of CoMn[Co(CN)6] Film Catalyst in the Oxygen Evolution Reaction

Authors

  • Bui Thi Hoa Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Vu Thi Kim Oanh Institute of Physic, Vietnam Academy of Science and Technology, 10 Dao Tan, Thu Le, Ba Dinh, Hanoi, Vietnam
  • Pham Hong Hanh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Ngo Thi Anh Tuyet Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Nguyen Thi Mai Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Do Chi Linh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Nguyen Thi Giang Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Nguyen Thanh Tung Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

DOI:

https://doi.org/10.62239/jca.2025.026

Keywords:

Hydrogen energy, CoMn[Co(CN)6] film, ion exchange method, oxygen evolution reaction

Abstract

Hydrogen is a clean and high-energy fuel with the potential to serve as an alternative to fossil fuels. Water splitting is a promising method for efficient and cost-effective hydrogen production. The Oxygen Evolution Reaction (OER) plays a crucial role in water splitting but presents challenges in terms of efficiency. Therefore, it is necessary to develop OER catalysts that are both cost-effective and stable for practical and large-scale hydrogen production. In this study, we fabricated CoMn[Co(CN)6] (CoMnCNCo) films on carbon paper surfaces using the ion exchange method with varying ion exchange times (1h, 2h, 3h). The structural morphology of the fabricated films was analyzed using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Energy-Dispersive X-ray Analysis (EDX). Furthermore, the catalytic activity of the CoMn[Co(CN)6] films with different ion exchange times was investigated, and they exhibited good catalytic activity for the OER, along with stability in an alkaline environment. 

Downloads

Download data is not yet available.

References

L. Ge, B. Zhang, W. Huang, Y. Li, L. Hou, J. Xiao, Z. Mao, X. Li, J. Energy Storage, 75 (2024) 109307. https://doi.org/10.1016/j.est.2023.109307

U. Bossel, B. Eliasson, Proc. Eur. Fuel Cell Forum, Lucerne, 36 (2002).https://afdc.energy.gov/files/pdfs/hyd_economy_bossel_eliasson.pdf

J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Int. J. Hydrogen Energy, 44(44) (2019) 15072–15086. https://doi.org/10.1016/j.ijhydene.2019.04.068

J. Mohammed‑Ibrahim, S. Xiaoming, X. Sun, J. Energy Chem., 34 (2019) 111–160. https://doi.org/10.1016/j.jechem.2018.09.016

S. Li, E. Li, X. An, X. Hao, Z. Jiang, G. Guan, Nanoscale, 13(26) (2021) 12788–12817. https://doi.org/10.1039/D1NR02592A

K. Zhang, R. Zou, Small, 17 (2021) 2100129. https://doi.org/10.1002/smll.202100129

J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang, Z.J. Xu, Chem. Soc. Rev., 49 (2020) 2196–2214. https://doi.org/10.1039/C9CS00607A

C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc., 137 (2015) 4347–4357. https://doi.org/10.1021/ja510442p

M.-I. Jamesh, X. Sun, R.J. Power Sources, 400 (2018) 31–68. https://doi.org/10.1016/j.jpowsour.2018.07.125

R.R. Raja Sulaiman, W.Y. Wong, K.S. Loh, Int. J. Energy Res., 46 (2022) 2241–2276. https://doi.org/10.1002/er.7380

Z. Cai, X. Bu, P. Wang, J.C. Ho, J. Yang, X. Wang, J. Mater. Chem. A, 7 (2019) 5069–5089. https://doi.org/10.1039/C8TA11273H

F. Wang, T.A. Shifa, X. Zhan, Y. Huang, K. Liu, Z. Cheng, C. Jiang, J. He, Nanoscale, 7 (2015) 19764–19788. https://doi.org/10.1039/C5NR06718A

X. Li, X. Hao, A. Abudula, G. Guan, J. Mater. Chem. A, 4 (2016) 11973–12000. https://doi.org/10.1039/C6TA02334G

Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev., 44 (2015) 2060–2086. https://doi.org/10.1039/C4CS00470A

G. Mohan Kumar, P. Ilanchezhiyan, C. Siva, A. Madhankumar, T.W. Kang, D.Y. Kim, Int. J. Hydrogen Energy, 45 (2020) 391–400. https://doi.org/10.1016/j.ijhydene.2019.10.104

H.T. Bui, D.Y. Ahn, N.K. Shrestha, M.M. Sung, J.K. Lee, S.H. Han, J. Mater. Chem. A, 4 (2016) 9781–9788. https://doi.org/10.1039/C6TA03436E

B. Singh, A. Indra, Mater. Today Energy, 16 (2020) 100404. https://doi.org/10.1016/j.mtener.2020.100404

L.M. Cao, D. Lu, D.C. Zhong, T.B. Lu, Coord. Chem. Rev., 407 (2020) 213156. https://doi.org/10.1016/j.ccr.2019.213156

H.H. Pham, D.C. Linh, T.T.A. Ngo, V.T.K. Oanh, B.X. Khuyen, S.A. Patil, N.H.T. Tran, S. Park, H. Im, H.T. Bui, N.K. Shrestha, Dalton Trans., 52 (2023) 12185–12193. https://doi.org/10.1039/D3DT02426A

L. Hu, P. Zhang, Q. Chen, N. Yan, J. Mei, Dalton Trans., 40 (2011) 5557–5562. https://doi.org/10.1039/C1DT10134J

L. Yang, T. Qiu, M. Shen, H. He, H. Huang, Compos. Sci. Technol., 196 (2020) 108232. https://doi.org/10.1016/j.compscitech.2020.108232

F. Wu, X. Guo, G. Hao, Y. Hu, W. Jiang, J. Solid State Electrochem., 23 (2019) 2627–2637. https://doi.org/10.1007/s10008-019-04362-x

B. Sidhureddy, J.S. Dondapati, A. Chen, Chem. Commun., 55 (2019) 3626–3629. https://doi.org/10.1039/C8CC10194A

F. Dionigi, Z. Zeng, I. Sinev, T. Merzdorf, S. Deshpande, M.B. Lopez, S. Kunze, I. Zegkinoglou, H. Sarodnik, D. Fan, A. Bergmann, J. Drnec, J.F. de Araujo, M. Gliech, D. Teschner, J. Zhu, W.-X. Li, J. Greeley, B.R. Cuenya, P. Strasser, Nat. Commun., 11 (2020) 2522. https://doi.org/10.1038/s41467-020-16237-1

Published

28-06-2025

Issue

Section

Full Articles

How to Cite

Effect of Ion Exchange Times on the Morphology and Catalytic Activity of CoMn[Co(CN)6] Film Catalyst in the Oxygen Evolution Reaction. (2025). Vietnam Journal of Catalysis and Adsorption, 14(2), 88-92. https://doi.org/10.62239/jca.2025.026

Share

Funding data

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1-10 of 586

You may also start an advanced similarity search for this article.