Effect of Ion Exchange Times on the Morphology and Catalytic Activity of CoMn[Co(CN)6] Film Catalyst in the Oxygen Evolution Reaction
DOI:
https://doi.org/10.62239/jca.2025.026Keywords:
Hydrogen energy, CoMn[Co(CN)6] film, ion exchange method, oxygen evolution reactionAbstract
Hydrogen is a clean and high-energy fuel with the potential to serve as an alternative to fossil fuels. Water splitting is a promising method for efficient and cost-effective hydrogen production. The Oxygen Evolution Reaction (OER) plays a crucial role in water splitting but presents challenges in terms of efficiency. Therefore, it is necessary to develop OER catalysts that are both cost-effective and stable for practical and large-scale hydrogen production. In this study, we fabricated CoMn[Co(CN)6] (CoMnCNCo) films on carbon paper surfaces using the ion exchange method with varying ion exchange times (1h, 2h, 3h). The structural morphology of the fabricated films was analyzed using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Energy-Dispersive X-ray Analysis (EDX). Furthermore, the catalytic activity of the CoMn[Co(CN)6] films with different ion exchange times was investigated, and they exhibited good catalytic activity for the OER, along with stability in an alkaline environment.
Downloads
References
L. Ge, B. Zhang, W. Huang, Y. Li, L. Hou, J. Xiao, Z. Mao, X. Li, J. Energy Storage, 75 (2024) 109307. https://doi.org/10.1016/j.est.2023.109307
U. Bossel, B. Eliasson, Proc. Eur. Fuel Cell Forum, Lucerne, 36 (2002).https://afdc.energy.gov/files/pdfs/hyd_economy_bossel_eliasson.pdf
J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Int. J. Hydrogen Energy, 44(44) (2019) 15072–15086. https://doi.org/10.1016/j.ijhydene.2019.04.068
J. Mohammed‑Ibrahim, S. Xiaoming, X. Sun, J. Energy Chem., 34 (2019) 111–160. https://doi.org/10.1016/j.jechem.2018.09.016
S. Li, E. Li, X. An, X. Hao, Z. Jiang, G. Guan, Nanoscale, 13(26) (2021) 12788–12817. https://doi.org/10.1039/D1NR02592A
K. Zhang, R. Zou, Small, 17 (2021) 2100129. https://doi.org/10.1002/smll.202100129
J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang, Z.J. Xu, Chem. Soc. Rev., 49 (2020) 2196–2214. https://doi.org/10.1039/C9CS00607A
C.C.L. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc., 137 (2015) 4347–4357. https://doi.org/10.1021/ja510442p
M.-I. Jamesh, X. Sun, R.J. Power Sources, 400 (2018) 31–68. https://doi.org/10.1016/j.jpowsour.2018.07.125
R.R. Raja Sulaiman, W.Y. Wong, K.S. Loh, Int. J. Energy Res., 46 (2022) 2241–2276. https://doi.org/10.1002/er.7380
Z. Cai, X. Bu, P. Wang, J.C. Ho, J. Yang, X. Wang, J. Mater. Chem. A, 7 (2019) 5069–5089. https://doi.org/10.1039/C8TA11273H
F. Wang, T.A. Shifa, X. Zhan, Y. Huang, K. Liu, Z. Cheng, C. Jiang, J. He, Nanoscale, 7 (2015) 19764–19788. https://doi.org/10.1039/C5NR06718A
X. Li, X. Hao, A. Abudula, G. Guan, J. Mater. Chem. A, 4 (2016) 11973–12000. https://doi.org/10.1039/C6TA02334G
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev., 44 (2015) 2060–2086. https://doi.org/10.1039/C4CS00470A
G. Mohan Kumar, P. Ilanchezhiyan, C. Siva, A. Madhankumar, T.W. Kang, D.Y. Kim, Int. J. Hydrogen Energy, 45 (2020) 391–400. https://doi.org/10.1016/j.ijhydene.2019.10.104
H.T. Bui, D.Y. Ahn, N.K. Shrestha, M.M. Sung, J.K. Lee, S.H. Han, J. Mater. Chem. A, 4 (2016) 9781–9788. https://doi.org/10.1039/C6TA03436E
B. Singh, A. Indra, Mater. Today Energy, 16 (2020) 100404. https://doi.org/10.1016/j.mtener.2020.100404
L.M. Cao, D. Lu, D.C. Zhong, T.B. Lu, Coord. Chem. Rev., 407 (2020) 213156. https://doi.org/10.1016/j.ccr.2019.213156
H.H. Pham, D.C. Linh, T.T.A. Ngo, V.T.K. Oanh, B.X. Khuyen, S.A. Patil, N.H.T. Tran, S. Park, H. Im, H.T. Bui, N.K. Shrestha, Dalton Trans., 52 (2023) 12185–12193. https://doi.org/10.1039/D3DT02426A
L. Hu, P. Zhang, Q. Chen, N. Yan, J. Mei, Dalton Trans., 40 (2011) 5557–5562. https://doi.org/10.1039/C1DT10134J
L. Yang, T. Qiu, M. Shen, H. He, H. Huang, Compos. Sci. Technol., 196 (2020) 108232. https://doi.org/10.1016/j.compscitech.2020.108232
F. Wu, X. Guo, G. Hao, Y. Hu, W. Jiang, J. Solid State Electrochem., 23 (2019) 2627–2637. https://doi.org/10.1007/s10008-019-04362-x
B. Sidhureddy, J.S. Dondapati, A. Chen, Chem. Commun., 55 (2019) 3626–3629. https://doi.org/10.1039/C8CC10194A
F. Dionigi, Z. Zeng, I. Sinev, T. Merzdorf, S. Deshpande, M.B. Lopez, S. Kunze, I. Zegkinoglou, H. Sarodnik, D. Fan, A. Bergmann, J. Drnec, J.F. de Araujo, M. Gliech, D. Teschner, J. Zhu, W.-X. Li, J. Greeley, B.R. Cuenya, P. Strasser, Nat. Commun., 11 (2020) 2522. https://doi.org/10.1038/s41467-020-16237-1
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers TĐHYD0.04/22-24