Using bottom ash from the domestic waste incinerator to make building materials
DOI:
https://doi.org/10.51316/jca.2021.081Keywords:
Blast furnace slag, ash from the domestic waste incinerator, activated alkaline solution, compressive strengthAbstract
This paper researched the use of ash from domestic waste incinerators to generate electricity and blast furnace slag for civil construction materials. Due to the presence of heavy metal elements in the ash from the domestic waste incinerator and the blast furnace slag, its use is limited. This study focused on the field of manufacturing adhesive materials based on the ash from the incinerator for power generation and blast furnace slag by activated alkaline solution and investigating the heavy metal migration into the environment. The study showed that the compressive strength of the adhesive from the ash of the electric generating incinerator - blast furnace slag (BFS) activated by alkaline solution had a compressive strength 19.98 MPa when cured at normal conditions. Ash from domestic waste incinerator (DWS) - BFS binder activated alkaline had the ability to fix heavy metals and can be used in construction works.
Downloads
References
J. Davidovits. J. Therm, Anal. Calorim 37 (1991) 1633- 1656. https://doi.org/10.1007/BF01912193
P. Chindaprasirt, U. Rattanasak, Clean Technol. Environ. 20 (2018) 1097-1103.
https://doi.org/10.1007/s10098-018-1532-4
C. Sreenivasulu, A. Ramakrishnaiah, J. G. Jawahar, Int. J. Adv. Res. Technol. 8 (2015) 83. ISSN: 22311963
M. Shriram, Pushparaj, N. Ravikiran, Inter J. Innov. Res. Sci., Eng. Technol. 9 (2016) 2347-6710. https://doi.org/10.15680/IJIRSET.2016.0505649
T. M. Ngo, Q. L. Bui, J. Wat. Res. Environ. Eng. 48 (2015) 50-56.
L. Yiquan, Z. Weiping, Y. En-Hua, Construc. Build. Mater. 112 (2016) 1005-1012. https://doi.org/10.1016/j.conbuildmat.2016.02.153
R. Forteza, M. Far, C. Seguı, V. Cerda´, Waste Manage. 24 (2004) 899-909. https://doi.org/10.1016/j.wasman.2004.07.004
X. Gao, W. Wang, T. Ye, F. Wang, Y. Lan, J. Environ. Manage. 88 (2008) 293-299. https://doi.org/10.1016/j.jenvman.2007.02.008
Z. Cong, Y. Lyu, D. Wang, Y. Ju, X. Shang, L. Li, Adv. Mater. Sci. Engineer. 6 (2020) 1-7. https://doi.org/10.1155/2020/7802103
P. Wang, Y. Hu, H. Cheng. Environ. Pollut. 252 (2019) 461-475.
https://doi.org/10.1016/j.envpol.2019.04.082
J. Pera, L. Coutaz, J. Ambroise, M. Chababbet, Cem. Concr. Res. 27 (1997) 1-5. https://doi.org/10.1016/S0008-8846(96)00193-7
M. A. Cinquepalmi, T. Mangialardi, L. Panei, A. E. Paolini, L. Piga, J. Hazard. Mater. 141 (2008) 585-593. https://doi.org/10.1016/j.jhazmat.2007.06.026
B. Vijaya Rangan. T. Indi. Concr, J. 88 (2014) 41-48.
S. D. Partha, N. Pradip, K. S. Prabir, Mater. Des. 62 (2014) 32-39. https://doi.org/10.1016/j.matdes.2014.05.001
J. Thaarrini, R. Venkatasubramani. Period, Polytech. Civ. Engineer. 60 (2016) 159-168. https://doi.org/10.3311/PPci.8014
N. Ganapati, A. S. S. N. Prasad, S. Adiseshu, P. V. V. Satayanaray, Inter. J. Engineer. Res. Develop. (IJERD) 4 (2012) 19-28.
QCVN 40:2011/BTNMT. Ministry of Natural Resources and Environment (2011).
M. Izquierdo, E. Vazquez, X. Querol, M. Barra, Á. Lópezl, F. Planna. Inter. Ash Utiliz. Sympos. Cent. Appl. Ener. Res., University of Kentucky (2001) 3-7.