Highly effective graphene membrane for transformer oil purification

Authors

  • Vu T. Tan School of Chemical Engineering, Hanoi University of Science and Technology Author
  • Nguyen Linh Chi School of Chemical Engineering, Hanoi University of Science and Technology Author
  • Pham Van Tuan International Institute for Materials Science, Hanoi University of Science and Technology Author

DOI:

https://doi.org/10.51316/jca.2023.028

Keywords:

Adsorbent, Graphene membrane, transformer oil, purification

Abstract

A highly effective adsorbent comprised of the Graphene membrane was created using the sonification method in this study. For all we know, the resulting Graphene membrane was employed as an adsorbent for transformer oil purification for the first time. The quality of the treated oil was evaluated through several factors, such as acid number TAN(mg KOH/g), color, breakdown voltage, and viscosity.  The results indicated that the Graphene membrane exceeded the other commercial adsorbents in terms of purifying capacity. Several reasons, including the unreduced oxygen functional groups, vacancy defects on the surface of the Graphene flake, the high specific surface area, and the proper pore size of the Graphene membrane for oil refining, might explain this exceptional outcome. Furthermore, the 3D structure of the Graphene membrane can extend the residence purification time of the transformer oil, assisting in the improvement of the purification capability of the Graphene membrane.

Downloads

Download data is not yet available.

References

Rafiq, M., Lv, Y. & Li, C. A Nanofluids, J. Nanomater. 3 (2016) 1–23. https://doi.org/10.1155/2016/8371560

Safiddine, L., Ziane-Zafour, H., Rao, U. M. & Fofana, I. Energies 12 (2019) 368-374. https://doi.org/10.3390/en12030368

Liu, Q., Venkatasubramanian, R., Matharage, S. & Wang, Z. Energies 12 1665 (2019). https://doi.org/10.3390/en12091665.

Salvi, S. & Paranjape, A. P. International Journal of Electrical and Electronics Engineering (2017). https://doi.org/10.14445/23488379/IJEEE-V4I3P105

Oumert, L. et al, IET Gener. Transm. Distrib. 11 (2017). https://doi.org/10.1049/iet-gtd.2016.1995

C. Laurentino, A. et al, Process Saf. Environ. Prot. - PROCESS SAF Env. PROT 85 (2007) 327–331. https://doi.org/10.1205/psep06057

Sulaiman, A.-Z., Noura, H. & Fardoun, A. A. 2011 World Congr. Sustain. Technol. WCST 2011 (2011). https://doi.org/10.1109/WCST19361.2011.6114241

Fofana, I., Wasserberg, V., Borsi, H. & Gockenbach, E. Electr. Insul. Mag. IEEE 20 (2004) 20–30. https://doi.org/ 10.1109/MEI.2004.1266362.

I Hafez, A., S Gerges, N., Elnagar, K., E Mohamed, S. & Hashem, Int. J. Adv. Sci. Tech. Res. 5 752 (2015). http://www.rspublication.com/ijst/index.ht

Ramesha, G. K., Vijaya Kumara, A., Muralidhara, H. B. & Sampath, S. J. Colloid Interface Sci. 361 (2011) 270–277. https://doi.org/10.1016/j.jcis.2011.05.050

C.R., M., M., L., Y.L., J., L., S. & R.T., R. K. Mater. Chem. Phys. 194 (2017) 243–252. https://doi.org/10.1016/j.matchemphys.2017.03.048

Gupta, K. & Khatri, O. P. J. Colloid Interface Sci. 501 (2017) 11–21. https://doi.org/10.1016/j.jcis.2017.04.035

Ali, M. M. & Sandhya, K. Y. RSC Adv 4 (2014) 51624–51631. https://doi.org/10.1039/C4RA05702C

Vinh, L. T., Khiem, T. N., Chinh, H. D., Tuan, P. V. & Tan, V. T. Mater. Res. Express 6 (2019) 075615. https://doi.org/10.1088/2053-1591/ab1862

Sebastian, N., Yu, W.-C., Hu, Y.-C., Balram, D. & Yu, Y.-H, Ultrason. Sonochem. 59 (2019) 104696. https://doi.org/10.1016/j.ultsonch.2019.104696

Rivera, L. M. et al, ArXiv190201850 Cond-Mat Physicsphysics (2019). https://doi.org/10.48550/arXiv.1902.01850

Stobinski, L. J. Electron Spectrosc. Relat. Phenom. 195 (2014) 145–154. https://doi.org/10.1016/j.elspec.2014.07.003

Emiru, T. F. & Ayele, D. W. Egypt. J. Basic Appl. Sci. 4 (2017) 74–79. https://doi.org/10.1016/j.ejbas.2016.11.002

Hsu, S.-H. et al. Sep. Purif. Technol. 109 (2013) 129–134. https://doi.org/10.1016/j.seppur.2013.03.005

Guliyev, N. G., Ibrahimov, H. J., Alekperov, J. A., Amirov, F. A. & Ibrahimova, Z. M. Int. J. Ind. Chem. 9 (2018) 277–284. https://doi.org//10.1007/s40090-018-0156-1

Blanco, I.. J. Compos. Sci. 4 (2020) 42. https://doi.org/10.3390/jcs4020042

Dou, Z. J. Mater. Chem. A 8 (2020) 15942–15950. https://doi.org/10.1039/D0TA03617J

Published

30-06-2023

Issue

Section

Full Articles

How to Cite

Highly effective graphene membrane for transformer oil purification. (2023). Vietnam Journal of Catalysis and Adsorption, 12(2), 43-49. https://doi.org/10.51316/jca.2023.028

Share

Funding data

Most read articles by the same author(s)

Similar Articles

1-10 of 110

You may also start an advanced similarity search for this article.