Research and development of heat-resistant coating based on polyaluminium phosphate (PAP) synthesized from aluminum slag
DOI:
https://doi.org/10.62239/jca.2025.021Keywords:
Heat-resitant coating, Phosphate binder, Polyaluminium phosphate, Aluminium Slag, Inorganic polymerAbstract
This study presents the development of a heat-resistant coating based on polyaluminium phosphate (PAP) synthesized from aluminum slag and phosphoric acid. The coating formulation included inorganic fillers such as SiO₂, TiO₂, talc, and Samot powder. The resulting coating exhibited strong adhesion (rated 5B per ASTM D3359), maintained structural integrity after exposure to temperatures up to 750 °C, and showed a total mass loss below 10% in thermogravimetric analysis (TGA). Structural and morphological analyses (SEM, XRD, EDX) confirmed the formation of stable crystalline phases including AlPO₄ and SiO₂. These findings support the potential application of aluminum slag-derived PAP coatings in high-temperature environments, contributing to sustainable and cost-effective material development.
Downloads
References
Y. Li, G. Chen, S. Zhu, H. Li, Z. Ma, Y. B. Liu, L. Liu, Bull. Mater. Sci. 42 (2019) 200. https://doi.org/10.1007/s12034-019-1912-3
B. Zhang, W. Gong, X. Li, P. Chen, B. Zhu, Mater. Res. 110 (2019) 765–772. https://doi.org/10.3139/146.111796
C. M. Le, T.-H. Le, J. Anal. Methods Chem. (2021) Article ID 5510193. https://doi.org/10.1155/2021/5510193
T. V. La, Chemistry Journal 48 (4A) (2010) 485–488
G. Cai, J. Wu, J. Guo, Y. Wan, Q. Zhou, P. Zhang, X. Yu, M. Wang, Materials 16 (13) (2023) 4498. https://doi.org/10.3390/ma16134498
D. D. L. Chung, Mater. Sci. Lett. 38 (2003) 2785–2791. https://doi.org/10.1023/A:1024446014334
A. Mikhailova et al., Procedia Eng. 206 (2017) 1376–1381. https://doi.org/10.1016/j.proeng.2017.10.698
Ines Soares, Joana Lia Ferreira, Helena Silva, Maria Paula Rodrigues, Journal of Cultural Heritage 66 (2024) 208–218. https://doi.org/10.1016/j.culher.2024.06.014
B. Zhang et al., Surf. Coat. Technol. 460 (2023) 128524. https://doi.org/10.1016/j.surfcoat.2023.128524
H. Wei, T. Wang, Q. Zhang, Y. Jiang, C. Mo, J. Chin. Chem. Soc. 67 (2020) 116–124. https://doi.org/10.1002/jccs.201900008
D. Chen, L. He, S. Shang, Mater. Sci. Eng. A 348 (2003) 29–35. https://doi.org/10.1016/S0921-5093(02)00643-3
S. Huo, Z. Dong, X. Li, P. Liu, P. Chen, B. Zhu, Int. J. Adhes. 125 (2023). https://doi.org/10.1016/j.ijadhadh.2023.103437
M. Wang, Z. Liang, S. Yan, X. Tao, Y. Zou, J. Li, X. Zhou, H. Zhang, Constr. Build. Mater. 359 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129480
M. Vippola, S. Ahmaniemi, J. Keränen, P. Vuoristo, T. Lepistö, T. Mäntylä, E. Olsson, Mater. Sci. Eng. A 323 (2002) 1–8. https://doi.org/10.1016/S0921-5093(01)01367-3
S. N. Chen, C. Lin, H. L. Hsu, X. H. Chen, Y. C. Huang, T. H. Hsieh, K. S. Ho, Y. J. Lin, Materials 15 (2022). https://doi.org/10.3390/ma15155317
M. Vippola, J. Keränen, X. Zou, S. Hovmöller, T. Lepistö, T. Mäntylä, J. Am. Ceram. Soc. 83 (2000) 1834–1836. https://doi.org/10.1111/j.1151-2916.2000.tb01477.x
Eldipa Piperopoulos, Giuseppe Scionnti, Mario Atria, Luigi Calabrese, Edoardo Proverbio, Polymers 14(3) (2022) 372. http://dx.doi.org/10.3390/polym14030372
J. Li, J. Liu, Y. Zhang, Y. Wan, J. Liu, G. Cai, X. Tao, W. Jing, M. Wang, Ceram. Int. (2024). https://doi.org/10.1016/j.ceramint.2024.08.440
C. Qi, X. Ji, J. Li, Z. Hu, X. Wei, B. Xiao, M. Wang, J. Eur. Ceram. Soc. 45 (2025). https://doi.org/10.1016/j.jeurceramsoc.2025.117356
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.