Research and development of heat-resistant coating based on polyaluminium phosphate (PAP) synthesized from aluminum slag
DOI:
https://doi.org/10.62239/jca.2025.021Keywords:
Heat-resitant coating, Phosphate binder, Polyaluminium phosphate, Aluminium Slag, Inorganic polymerAbstract
This study presents the development of a heat-resistant coating based on polyaluminium phosphate (PAP) synthesized from aluminum slag and phosphoric acid. The coating formulation included inorganic fillers such as SiO₂, TiO₂, talc, and Samot powder. The resulting coating exhibited strong adhesion (rated 5B per ASTM D3359), maintained structural integrity after exposure to temperatures up to 750 °C, and showed a total mass loss below 10% in thermogravimetric analysis (TGA). Structural and morphological analyses (SEM, XRD, EDX) confirmed the formation of stable crystalline phases including AlPO₄ and SiO₂. These findings support the potential application of aluminum slag-derived PAP coatings in high-temperature environments, contributing to sustainable and cost-effective material development.
Downloads
References
Y. Li, G. Chen, S. Zhu, H. Li, Z. Ma, Y. B. Liu, L. Liu, Bull. Mater. Sci. 42 (2019) 200. https://doi.org/10.1007/s12034-019-1912-3
B. Zhang, W. Gong, X. Li, P. Chen, B. Zhu, Mater. Res. 110 (2019) 765–772. https://doi.org/10.3139/146.111796
C. M. Le, T.-H. Le, J. Anal. Methods Chem. (2021) Article ID 5510193. https://doi.org/10.1155/2021/5510193
T. V. La, Chemistry Journal 48(4A) (2010) 485–488
G. Cai, J. Wu, J. Guo, Y. Wan, Q. Zhou, P. Zhang, X. Yu, M. Wang, Materials 16(13) (2023) 4498. https://doi.org/10.3390/ma16134498
D. D. L. Chung, Mater. Sci. Lett. 38 (2003) 2785–2791. https://doi.org/10.1023/A:1024446014334
A. Mikhailova et al., Procedia Eng. 206 (2017) 1376–1381. https://doi.org/10.1016/j.proeng.2017.10.698
Ines Soares, Joana Lia Ferreira, Helena Silva, Maria Paula Rodrigues, Journal of Cultural Heritage 66 (2024) 208–218. https://doi.org/10.1016/j.culher.2024.06.014
B. Zhang et al., Surf. Coat. Technol. 460 (2023) 128524. https://doi.org/10.1016/j.surfcoat.2023.128524
H. Wei, T. Wang, Q. Zhang, Y. Jiang, C. Mo, J. Chin. Chem. Soc. 67 (2020) 116–124. https://doi.org/10.1002/jccs.201900008
D. Chen, L. He, S. Shang, Mater. Sci. Eng. A 348 (2003) 29–35. https://doi.org/10.1016/S0921-5093(02)00643-3
S. Huo, Z. Dong, X. Li, P. Liu, P. Chen, B. Zhu, Int. J. Adhes. 125 (2023). https://doi.org/10.1016/j.ijadhadh.2023.103437
M. Wang, Z. Liang, S. Yan, X. Tao, Y. Zou, J. Li, X. Zhou, H. Zhang, Constr. Build. Mater. 359 (2022). https://doi.org/10.1016/j.conbuildmat.2022.129480
M. Vippola, S. Ahmaniemi, J. Keränen, P. Vuoristo, T. Lepistö, T. Mäntylä, E. Olsson, Mater. Sci. Eng. A 323 (2002) 1–8. https://doi.org/10.1016/S0921-5093(01)01367-3
S. N. Chen, C. Lin, H. L. Hsu, X. H. Chen, Y. C. Huang, T. H. Hsieh, K. S. Ho, Y. J. Lin, Materials 15 (2022). https://doi.org/10.3390/ma15155317
M. Vippola, J. Keränen, X. Zou, S. Hovmöller, T. Lepistö, T. Mäntylä, J. Am. Ceram. Soc. 83 (2000) 1834–1836. https://doi.org/10.1111/j.1151-2916.2000.tb01477.x
Eldipa Piperopoulos, Giuseppe Scionnti, Mario Atria, Luigi Calabrese, Edoardo Proverbio, Polymers 14(3) (2022) 372. http://dx.doi.org/10.3390/polym14030372
J. Li, J. Liu, Y. Zhang, Y. Wan, J. Liu, G. Cai, X. Tao, W. Jing, M. Wang, Ceram. Int. (2024). https://doi.org/10.1016/j.ceramint.2024.08.440
C. Qi, X. Ji, J. Li, Z. Hu, X. Wei, B. Xiao, M. Wang, J. Eur. Ceram. Soc. 45 (2025). https://doi.org/10.1016/j.jeurceramsoc.2025.117356
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.