Synthesis of Cu2O-BiVO4 catalysts used as high-performance photoanodes for photoelectrochemical water splitting
DOI:
https://doi.org/10.62239/jca.2025.007Keywords:
Photoelectrochemical water splitting, copper(I) oxide, bismuth vanadate, photoanodeAbstract
Herein, Cu2O and BiVO4 were synthesized using different methods. The structure, morphology, light absorption ability of synthesized materials were examined by XRD, SEM, DRS UV-Vis, PL and photoelectrochemical performance. was determined by LSV and EIS methods. BiVO₄ synthesized by the electrodeposition exhibits lower crystallinity and smaller particle sizes, leading to higher photocurrent density (0.55 mA·cm-2 at 1.23 V versus RHE). The combination of Cu2O and BiVO4 improves charge transfer ability and photocatalytic performance, with a current density of 1.23 mA·cm-2 at 1.23 V vs RHE, demonstrating the material's potential as a photoanode in photoelectrochemical water splitting.
Downloads
References
T.W. Kim, K.S. Choi, Science 343 (6174) (2014) 990-994, https://www.science.org/doi/10.1126/science.1246913
B. Patial, A. Bansal, R. Gupta, S.K. Mittal, REVIC 44 (4) (2024) https://doi.org/10.1515/revic-2024-0009
R. M. Abdelfattah, M. Shaban, F. Mohamed, A.A.M. El-Reedy, H.M. Abd El-Salam, ACS Omeg, 6 (32) (2021) 20779–20789 https://doi.org/10.1021/acsomega.1c01802
A. Fujishima, K. Honda, Nature 238 (5358) (1972) 37-38 https://www.nature.com/articles/238037a0
N. Ma, C. Lu, Y. Liu, T. Han, W. Dong, D. Wu, X. Xu, Nano micro Small 20 (3) (2024) https://doi.org/10.1002/smll.202304839
H. T. Htet, Y. Jung, Y. Kim, S. Lee, ACS Appl. Mater. Interfaces 16 (39) (2024) 52383–52392 https://doi.org/10.1021/acsami.4c11095
G. Talasila, S. Sachdev, U. Srivastva, D. Saxena, S.S.V. Ramakumar, Energy Rep 6 (2020) 1963-1972 https://doi.org/10.1016/j.egyr.2020.07.024
C. Zhou, Z. S. Bellis, T. J. Smart, W. Zhang, L. Zhang, Y. Ping, M. Liu, Chem. Mate 32 (15) 2020) 6401–6409 https://doi.org/10.1021/acs.chemmater.0c01481
D. Jiang, L. Zhang, Q. Yue, T. Wang, Q. Huang, P. Du, Int. J. Hydrogen Energy 46 (29) (2021) 15517-15525 https://doi.org/10.1016/j.ijhydene.2021.02.094
H. Wu, S. Qu, Z. Xie, Y. H. Ng, ACS Appl. Energy Mater. 5 (7) (2022) 8419–8427 https://doi.org/10.1021/acsaem.2c00963
S. Majumder, X. Su, K. H. Kim, Surfaces and Interfaces 39 (23) (2023) 102936 https://doi.org/10.1016/j.surfin.2023.102936
G. Liu, Y. Zhu, H. Gao, S. Xu, Z. Wen, L. Sun, F. Li, ACS Catal. 13 (13) (2023) 8445–8454 https://doi.org/10.1021/acscatal.3c01235
M. Zhou, Z. Guo, Z. Liu, Appl. Catal., 260 (2020) 118213 https://doi.org/10.1016/j.apcatb.2019.118213
J. Heo, H. Bae, P. Mane, V.Burungale, C. Seong, J. S. Ha, ACS Omega 8 (36) (2023) 32794–32803 https://doi.org/10.1021/acsomega.3c03585
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2022-SPH-15