High efficiency of CQDs/UiO-66 photocatalytic nanocomposite for degradation of RR-195 under visible irradiation

Authors

  • Nguyen Thi Phuong Lan Faculty of Applied Sciences, University of Economics-Technology for Industries, 456-Minh Khai, Vinh Tuy, Hai Ba Trung, Hanoi, Vietnam. Author
  • Nguyen Thi Hong Van Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Cau Giay, Hanoi, Vietnam | Institute of Environment, Vietnam Maritime University, 484 Lach Tray, Le Chan, Hai Phong, Vietnam Author
  • Duong Thi Thuy Trang Department of Chemical Engineering, Hanoi University of Mining and Geology, 18-Pho Vien, Duc Thang, Bac Tu Liem District, Hanoi, Vietnam. Author
  • Pham Xuan Nui Department of Chemical Engineering, Hanoi University of Mining and Geology, 18-Pho Vien, Duc Thang, Bac Tu Liem District, Hanoi, Vietnam. Author

DOI:

https://doi.org/10.62239/jca.2024.065

Keywords:

CQDs, UiO-66, degradation, RR-195, photocatalyst, nanocomposite

Abstract

CQDs, characteristically quasispheroidal carbon nanoparticles composed of amorphous to crystalline carbon base,  are a prospective semiconductor quantum dots owing to its excellent optical absorptivity, chemical stability, nontoxicity, and facile synthesis. In this study, we demonstrated the impregnation method to integrate CQDs, formed from chitosan with UiO-66 from terephthalic acid recycled by waste PET to synthesize CQDs@UiO-66 nanocomposite. After the hybridization of CQDs with UiO-66, the low band gap energy of the CQDs@UiO-66 sample was determined at 2.4 eV, allowed the demonstration of photocatalytic activity under high visible light. This material was tested in the photodegradation of RR-195 dye and compared with the pristine components. The highest RR-195 degradation efficiency recorded when using the catalyst mass of 50 mg, dye concentration of 70 ppm after 4 h under visible light irradiation was 96% and the result rather maintained its performance (86,4%) after four cycles. These results could promote a new material circularity pathway to develop new semiconductors that can be used to protect water from further pollution.

Downloads

Download data is not yet available.

References

S. Chaudhary, S. Kumar, B. Kaur, S.K. Mehta, RSC Adv. 6 (2016) 90526-90536. https://doi.org/ 10.1039/c6ra15691f

K. Qu, J. Wang, J. Ren, X. Qu, Chem. - A Eur. J. 19 (2013) 7252. https://doi.org/ 10.1002/chem.201300042

P. Singh, A. Borthakur, P. K Mishra, D. Tiwary, Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants, Challenges and Possibilities, 2019. https://doi.org/10.1016/C2018-0-03858-X

Ł. Janus, M. Pia˛tkowski, J. Radwan-Pragłowska, D. Bogdał, D. Matysek, Nanomaterials 9 (2019) 274. https://doi.org/10.3390/nano9020274

Z. Li, G. Che, W. Jiang, L. Liu, H. Wang, RSC Adv. 9 (2019). https://doi.org/10.1039/c9ra05600a

J. Yu, X. Wang, L. Chen, G. Lu, G. Shi, X. Xie, Y. Wang, J. Sun, Chem. Eng. J. 435 (2022) 135033. https://doi.org/10.1016/j.cej.2022.135033

P.S. Bárcia, D. Guimarães, P.A.P. Mendes, J.A.C. Silva, V. Guillermc, H. Chevreau, C. Serre, and A.E. Rodrigues, Micropor. Mesopor. Mat. 139 (2011) 67–73. https://doi.org/10.1016/j.micromeso.2010.10.019

A.M. Viana, S.O. Ribeiro, B. Castro, S.S. Balula, L. Cunha-Silva, Materials 12 (2019) 3009. https://doi.org/10.3390/ma12183009

X. Zhou, W. Huang, J. Shi, Z. Zhao, Q. Xia, Y. Li, H. Wang, Z. Li, J. Mater. Chem. A. 2(13) (2014), 4722–4730. https://doi.org/10.1039/C3TA15086K

R. Lin, S. Li, J. Wang, J. Xu, C. Xu, J. Wang, C. Li, Z. Li, Inorg. Chem. Front. 5 (2018) 3170–3177. https://doi.org/10.1039/C8QI01164H

X. Chen, H. Gao, M. Yang, L. Xing, W. Dong, A. Li, H. Zheng, G. Wang, Energy storage mater. 18 (2018) 349–355. https://doi.org/10.1016/j.ensm.2018.08.015

X. Wei, Y. Wang, Y. Huang, C. Fan, J. Alloys and Comp. 802 (2019) 467–476. https://doi.org/10.1016/j.jallcom.2019.06.086

J. Yu, X. Wang, L. Chen, G. Lu, G. Shi, X. Xie, Y. Wang, J. Sun, Chem. Eng. J. 435 (2022) 135033. https://doi.org/10.1016/j.cej.2022.135033

X.N. Pham, V.-T. Vu, H.V.T. Nguyen, T.-T.-B. Nguyen, H.V. Doan, Nanoscale Adv. 4 (2022) 3600–3608. Htttps://doi.org/10.1039/d2na00371f

N.T. Hoa, L.T. Nguyen, V.V. Tai, X.N. Pham, Vietnam Journal of Catalysis and Adsorption, 10 (2021) 125–136. https://doi.org/10.51316/jca.2021.079

H.R. Abida, H. Tian, H.-M. Anga, M.O. Tadea, C. Buckley, S. Wang, Chem. Eng. J., 187 (2012) 415–420. https://doi.org/10.1016/j.cej.2012.01.104

Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang, Y. Liu, Chem. Commun. 48 (2012) 380–382. https://doi.org/10.1039/C1CC15678K

H. R. Abid, G. H. Pham, H. M. Ang, M. O. Tade, S. Wang, J. Colloid Interf. Sci. 366 (2012) 120–124. https://doi.org/10.1016/j.jcis.2011.09.060

A.M. Viana, S.O. Ribeiro, B. Castro, S.S. Balula, L. Cunha-Silva, Materials 12 (2019) 3009. https://doi.org/10.3390/ma12183009

P.S. Bárcia, D. Guimarães, P.A.P. Mendes, J.A.C. Silva, V. Guillermc, H. Chevreau, C. Serre, A.E. Rodrigues, Micropor. Mesopor. Mat. 139 (2011) 67–73. https://doi.org/10.2016/J.MICROMESO.2010.10.019

N. Prasetya, B.P. Ladewig, J. Mater. Chem. A 7 (2019) 15164–15172. https://doi.org/10.1039/C9TA02096A

J. Yu, X. Wang, L. Chen, G. Lu, G. Shi, X. Xie, Y. Wang, J. Sun. Chem. Eng. J. 435 (2022) 135033. https://doi.org/10.1016/j.cej.2022.135033

Published

30-12-2024

Issue

Section

Full Articles

How to Cite

High efficiency of CQDs/UiO-66 photocatalytic nanocomposite for degradation of RR-195 under visible irradiation. (2024). Vietnam Journal of Catalysis and Adsorption, 13(4), 1-7. https://doi.org/10.62239/jca.2024.065

Share

Similar Articles

1-10 of 166

You may also start an advanced similarity search for this article.