Polymerization of Thermo-Responsive Poly(N-vinylcaprolactam): Effects of Temperature, Initiator and Monomer Concentration on Percent Conversion
DOI:
https://doi.org/10.62239/jca.2023.072Keywords:
FTIR, UV-vis, Thermal-responsive polymer, Free radical polymerizationAbstract
Poly(N-vinyl caprolactam) (PNVCL) is a thermally responsive polymer. Its temperature-responsive properties make it an attractive candidate for various applications. A series of temperature-sensitive PNVCL were synthesized through free radical polymerization, using various of amount of Azobisisobutyronitrile (AIBN) as initiator agent and with reaction temperatures set at 60oC, 70oC, 80oC. The percent conversion of polymerization was determined using the Hubl method to investigate the effects of three factors: initiator agent concentration, monomer concentration and reaction temperature. Furthermore, the chemical structure and the responsiveness of the PNVCL polymer were analyzed using Fourier transform infrared spectroscopy (FTIR) and UV-vis spectrometer, respectively. The study revealed that increasing the reaction temperature, initiator concentration, and monomer concentration resulted in higher percent conversion of polymerization. Finally, the obtained polymer demonstrated thermal sensitivity within the range of 32oC to 38oC, which is close to human body temperature, suitable for biomedical applications.
Downloads
References
X. Li, Q. Sun, Q. Li, N. Kawazoe, G. Chen, Functional hydrogels with tunable structures and properties for tissue engineering applications, Frontiers in Chemistry, 2018.
C. Echeverria, S.N. Fernandes, M.H. Godinho, J.P. Borges, P.I.P. Soares, Gels 4 (2018) 1. https://10.3390/gels4020054
F. Puza, K. Lienkamp, Advanced Functional Materials 32 (2022). https://10.1002/adfm.202205345
V. Kozlovskaya, E. Kharlampieva, ACS Applied Polymer Materials 2 (2020) 26. https://10.1021/acsapm.9b00863
D. Han, Z. Lu, S.A. Chester, H. Lee, Scientific Reports 8 (2018) 1. https://10.1038/s41598-018-20385-2
N.T. Bích Trâm, Đ.T. Lệ Hằng, L.T. Thu Thắm, N.Đ. Hải, N.C. Khoa, T.N. Quyển, Vietnam Journal of Chemistry 54 (2016) 603. https://10.15625/0866-7144.2016-00372
Y. Liu, W. He, Z. Zhang, B.P. Lee, Gels 4 (2018). https://10.3390/gels4020046
T.Đ. Công, T.V. Thắng, N.V. Khôi, T.T. Như Mai, H.D. Thanh, Vietnam Journal of Science and Technology 52 (2014) 195. https://10.15625/0866-708X/52/2/3400
D. Subhash, H. Mody, R. Banerjee, D. Bahadur, R. Srivastava, Proceedings of the IEEE Conference on Nanotechnology (2011) 1741. https://10.1109/NANO.2011.6144388
K. Zubik, P. Singhsa, Y. Wang, H. Manuspiya, R. Narain, Polymers 9 (2017) 1. https://10.3390/polym9040119
Y. Horiguchi, H. Kawakita, K. Ohto, S. Morisada, Advanced Powder Technology 29 (2018) 266. https://10.1016/j.apt.2017.11.010
L.D. Morgret, Office (2004).
R.L. Sala, M.Y. Kwon, M. Kim, S.E. Gullbrand, E.A. Henning, R.L. Mauck, E.R. Camargo, J.A. Burdick, Tissue engineering. Part A 23 (2017) 935. https://10.1089/ten.tea.2016.0464
N.A. Cortez-Lemus, A. Licea-Claverie, Progress in Polymer Science 53 (2016) 1. https://10.1016/j.progpolymsci.2015.08.001
S. Ozkan, R.L. McMullen, Handbook of Pyrrolidone and Caprolactam Based Materials 4 (2021) 1. https://10.1002/9781119468769.hpcbm019
S.F. Medeiros, J.C.S. Barboza, M.I. Re´, R. Giudici, A.M. Santos, Journal of Applied Polymer Science 118
(2010) 229. https://10.1002/app.32204
J. Siirilä, Soft Poly ( N -Vinylcaprolactam ) Nanoparticles in Aqueous Dispersions, 2020, p. 1.
J.K.C. Nduka, P.O. Omozuwa, O.E. Imanah, Arabian Journal of Chemistry 14 (2021) 103063. https://doi.org/10.1016/j.arabjc.2021.103063
J. Peng, D. Tang, H. Lv, N. Wang, X. Yang, Z. Sun, Z. Yu, Colloid and Polymer Science 297 (2019) 1255. https://10.1007/s00396-019-04537-y
S. Kozanoǧlu, T. Özdemir, A. Usanmaz, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 48 (2011) 467. https://10.1080/10601325.2011.573350