A theoretical study on the kinetics for ethanol reaction with formyl radical
DOI:
https://doi.org/10.51316/jca.2022.006Keywords:
Reaction mechanism, formyl radical (HCO), ethanol (C2H5OH), PESAbstract
C2H5OH is one of important renewable fuels. The mechanism for the C2H5OH + HCO reaction has been investigated by a potential energy surface calculation at the B3LYP/aug-cc-pVTZ (optimization) and CCSD(T)/cc-pVTZ (single-point) levels. Our results show that the HCO free radical can abstract the H atoms in the OH group giving CH3CH2O + CH2O or in the CH2 group giving CH3CHOH + CH2O. The rate constant results by TST calculations considering tunneling corrections show that the second pathway is dominate in all the calculation temperature range of 300-2000K.
Downloads
References
Z. Min, T.H. Wong, R. Quandt, and R. Bersohn, J. Phys. Chem. A 1999, 103, 10451-10453. https://doi.org/10.1021/jp992198j
H. Su, S. Zhao, K. Liu, and T. Xiang, J. Phys. Chem. A 2007, 111, 9600-9605. https://doi.org/10.1021/jp073993x
L.N. Krasnoperov, E.N. Chesnokov, H. Stark, A.R. Ravishankara, Proceedings of the Combustion Institute 30 (2005) 935–943. https://doi.org/10.1016/j.proci.2004.08.223
S. Cheskis, J. Chem. Phys. 102 (1995), 1851-1854. https://doi.org/10.1063/1.468713
J.J. Scherer, D.J. Rakestraw, Chem. Phys. Lett. 265 (1997), 169-176.
https://doi.org/10.1016/S0009-2614(96)01403-0
R. Lesclaux, P. Rousse, B. Veyret, and C. Pouchant, J. Am. Chem. Soc., 108 (1986) 3872-3879. https://doi.org/10.1021/ja00274a002
R.S. Timonen, E. Ratajczak, D. Gutman, J. Phys. Chem. A, 92 (1988), 651. https://doi.org/10.1021/j100314a017
A.E. Farrell, R.J. Plevin, B. Turner, A.D. Jones, M. O’Hare, D.M. Kammen, Science, 311 (2006), 506. https:// 10.1126/science.1121416
Z.F. Xu, J. Park, M.C. Lin, J. Chem. Phys., 120 (2004), 6593. https://doi.org/10.1063/1.1650832
S.C. Xu, M.C. Lin, Proceed. Combust. Institut., 31 (2007), 159. https://doi.org/10.1016/j.proci.2006.07.132
J. Park, Z.F. Xu and M.C. Lin, J. Chem. Phys., 118 (2003), 9990-96.
https://doi.org/10.1063/1.1573182
A.D. Becke, J. Chem. Phys. 98 (1993), 5648. https://doi.org/10.1063/1.464913
G.D. Purvis III, R.J. Bartlett, J. Chem. Phys. 76 (1982), 1910-1918.
https://doi.org/10.1063/1.443164
M.J. Frisch, G.W. Trucks, H.B. Schlegel, J.A. Pople, Gaussian, Inc., Pittsburgh PA, 2009.
H. Eyring, J. Chem. Phys. 107 (1935), 3. https://doi.org/10.1063/1.1749604
C. Eckart, Phys. Rev. 35 (1930), 1303-1309. https://doi.org/10.1103/PhysRev.35.1303
J.R. Barker, N.F. Ortiz, J.M. Preses, L.L. Lohr, A. Maranzana, P.J. Stimac, T.L. Nguyen, T.J.D. Kumar, MultiWell Programe Suite User Manual, v. 2014.1; University of Michigan, US, 2014.
S. Coussan, Y. Bouteiller, J.P. Perchard and W.Q. Zheng, J. Phys. Chem. A, 102 (1998), 5789-5793. https://doi.org/10.1021/jp9805961
R.K. Kakar, C.R. Quade, J. Chem. Phys. 72(1980), 4300. https://doi.org/10.1063/1.439723
G. Herzberg, Electronic spectra and electronic structure of polyatomic molecules,Van Nostrand,New York, 1966.
M.E. Jacox, Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules, J. Phys. Chem.Ref. Data, Monograph 3 (1994). https://webbook.nist.gov/chemistry/
J.R. Durig, W.E. Bucy, C.J. Wurrey, L.A. Carreira, J. Phys. Chem. 79(1975) 988. https://doi.org/10.1021/j100577a009
K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., 1979. https://doi.org/10.1007/978-1-4757-0961-2
L.V. Gurvich, I.V. Veyts, C.B. Alcock, Thermodynamic Properties of Individual Substances, Fouth Edition, Hemisphere Pub. Co., New York, 1989.
K. Kuchitsu (ed.), L. Bornstein: Group II: Molecules and Radicals Volume 23: Structure Data for Free Polyatomic Molecules. Springer. Berlin. 1995.
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 104.06-2018.33