Preparation, characterization and photocatalytic activity of SrTiO3 and Ag2O/SrTiO3 nanomaterials
DOI:
https://doi.org/10.51316/jca.2021.125Keywords:
Ag2O/SrTiO3, visible photocatalytic, degradation, methyl orangeAbstract
The pure SrTiO3 nanoparticles were synthesized by sol-gel method and Ag2O loaded SrTiO3 (Ag2O/SrTiO3) was prepared by precipitation method. The obtained samples were characterized with powder X-ray diffraction (XRD), transmission electron microscope (TEM) and UV-visible diffuse reflection spectrum (DRS). The effect of Ag2O loading on the photocatalytic activity of Ag2O/SrTiO3 nanoparticles for the degradation of methyl orange (MO) as amodel pollutant under visible light irradiation was studied. Compared with pure SrTiO3 nanoparticles, the Ag2O/SrTiO3 nanoparticle displayed higher photocatalytic activity for the degradation of methyl orange and the 5 % Ag2O/SrTiO3 photocatalyst exhibited the highest photocatalytic activity.
Downloads
References
E. Grabowska, Appl. Catal. B Environ. 186 (2016) 97-126. https://doi.org/10.1016/j.apcatb.2015.12.035
P. Kanhere, Z. Chen, Molecules 19 (2014) 19995-20022. https://doi.org/10.3390/molecules191219995
U. Sulaeman, S. Yin., T. Sato, Appl. Catal. B Environ. 105 (2011) 206-210. https://doi.org/10.1016/j.apcatb.2011.04.017
H. Yu, J. Wang, S. Yan, T. Yu, Z. Zou, J. Photochem. Photobiol. A Chem. 275 (2014) 65-71. https://doi.org/10.1016/j.jphotochem.2013.10.014
J. Wang, S. Yin, M. Komatsu, T. Sato, J. Eur. Ceram. Soc. 25 (2005) 3207-3212. https://doi.org/10.1016/j.jeurceramsoc.2004.07.027
T. Cao, Y. Li, C. Wang, C. Shao, Y. Liu, Langmuir 27 (2011) 2946-2952. https://doi.org/10.1021/la104195v
K. Van Benthem, C. Elsässer, R. French, J. Appl. Phys. 90 (2001) 6156-6164. https://doi.org/10.1063/1.1415766
K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, J. Photochem. Photobiol. A Chem. 148 (2002) 71-77. https://doi.org/10.1016/S1010-6030(02)00070-9
R. Konta, T. Ishii, H. Kato, A. Kudo, J. Phys. Chem. B 108 (2004) 8992-8995. https://doi.org/10.1021/jp049556p
X. Zhou, J. Shi, C. Li, J. Phys. Chem. CA 115 (2011) 8305-8311. https://doi.org/10.1021/jp200022x
T. Ishii, H. Kato, A. Kudo, J. Photochem. Photobiol. A Chem. 163 (2004) 181-186. https://doi.org/10.1016/S1010-6030(03)00442-8
H. Yu, S. Ouyang, S. Yan, Z. Li, T. Yu, Z. Zou, J. Mater. Chem. 21 (2011) 11347-11351. https://doi.org/10.1039/C1JM11385B
P.Konstas, I. Konstantinou, D. Petrakis, T. Albanis, Catalysts 8 (2018) 528. https://doi.org/10.3390/catal8110528
D. N. Bui, J. Mu, L. Wang, S. Kang, X. Li, Appl. Sur. Sci. 274 (2013) 328-333. https://doi.org/10.1016/j.apsusc.2013.03.054
15. C. Liu, P. Li, G. Wu, B. Luo, S. Lin, A. Rena , W. Shi, RSC Adv. 43 (2015). https://doi.org/10.1039/C5RA03086B
16. D. Zhou, G. Wang, Y. Feng, W. Chen, J. Chen, Z. Yu, Y. Zhang, J. Wang, L. Tang, Dalton Trans (2021). https://doi.org/10.1039/D1DT00825K
17. Y. Cui, H. Sun, Nanotechnology 31(24) (2020) 45702. https://doi.org/10.1088/1361-6528/ab7888
18. B.D. Nguyen, Vietnam J. Chem. 51(3AB) (2013) 422 – 425.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2020-TNA-12