Construction of NdFeO3 nanoparticles on reduced graphene oxide for an enhanced visible light assisted-Fenton degradation of organic pollutant in oily wastewater
DOI:
https://doi.org/10.51316/jca.2023.029Keywords:
NdFeO3, rGO, photo-Fenton, visible light, phenolAbstract
In this study, reduced graphene oxide (rGO) incorporated on NdFeO3 (NFO/rGO) nanocomposite was successfully synthesized by using a facile hydrothermal method for photo-Fenton degradation of phenol in oily wastewater. The structural, elemental, morphological, optical property, and photo-Fenton performance of NFO/rGO nanocomposite were evaluated. From the characterizations, the prepared NFO/rGO nanocomposite showed a heterostructure between reduced graphene oxide (rGO) and NdFeO3. In addition, the prepared NFO/rGO photocatalyst has efficient charge separation compared to that of pure NFO. The photo-Fenton catalytic activity of the NFO/rGO photocatalyst was investigated by phenol degradation under visible light irradiation, with a maximum removal efficiency of 94.3 % after 90 min. In contrast to pure NFO, the introduction of rGO could suggestively enhance the photo-Fenton catalytic activity by increasing the specific surface area and narrow band gap energy. The possible reaction mechanism was also discussed.
Downloads
References
Kumar, A., et al., Mater. Chem. Frontiers 1(11) (2017) 2391-2404. https://doi.org/10.1039/C7QM00362E
Sun, J., et al., J. Colloid Inter. Sci. 588 (2021) 19-30. https://doi.org/10.1016/j.jcis.2020.12.043
Ebrahiem, E.E., M.N. Al-Maghrabi, and A.R. Mobarki, Arabian J. Chem. 10 (2017) S1674-S1679. https://doi.org/10.1016/j.arabjc.2013.06.012
Kumar, A., A. Kumar, and V. Krishnan, Acs Catal. 10(17) (2020) 10253-10315. https://doi.org/10.1021/acscatal.0c02947
Prabagar, J.S., et al., Mater. Today: Proceedings 75 (2023) 15-23. https://doi.org/10.1016/j.matpr.2022.10.230
Phan, T.T.N., et al., J. Environ. Manage. 233 (2019) 471-480. https://doi.org/10.1016/j.jenvman.2018.12.051
Phan, T.T.N., et al., RSC Adv. 8(63) (2018) 36181-36190. https://doi.org/10.1039/C8RA07073C
Wang, L., et al., J. Environ. Chem. Eng. 10(5) (2022) 108330. https://doi.org/10.1016/j.jece.2022.108330
Nga, P.T.T., et al., Vietnam J. Chem. 60(1) (2022) 76-83. https://doi.org/10.1002/vjch.202100082
Farhadi, A.R.K., et al., J. Taiwan Ins.Chem. Eng. 120 (2021) 77-92. https://doi.org/10.1016/j.jtice.2021.03.021
Venkatesh, G., et al., Colloids Surf. A: Physicochem. Eng. Aspects 629 (2021) 127523. https://doi.org/10.1016/j.colsurfa.2021.127523
Xu, D., et al., App. Catal. B: Environ. 164 (2015) 380-388. https://doi.org/10.1016/j.apcatb.2014.09.05
Zubir, N.A., et al., Chem.l Commu. 51(45) (2015) 9291-9293.
https://doi.org/10.1039/C5CC02292D
Justh, N., et al., J. Thermal Anal. Calorimetry, 131 (2018) 2267-2272. https://doi.org/10.1007/s10973-017-6697-2
Wang, Y., et al., Mater. Let. 60(13-14) (2006) 1767-1770. https://doi.org/10.1016/j.matlet.2005.12.015
Phan, T.T.N., et al., J. Chem. 2021 (2021) 1-11. https://doi.org/10.1155/2021/5841066
Karpov, O., M. Tomkovich, and E. Tugova, Russian J. General Chem. 88 (2018) 2133-2138. https://doi.org/10.1134/S1070363218100171
Wang, Z., et al., Nano Res. 3 (2010) 748-756. https://doi.org/10.1007/s12274-010-0041-5
Aamir, M., et al., J. Mole. Liquids 322 (2021) 114895. https://doi.org/10.1016/j.molliq.2020.114895
Yuasa, M., et al., J. Appl. Electrochem. 49 (2019) 1055-1067. https://doi.org/10.1007/s10800-019-01350-x
Albadi, Y., et al., Inorganics 9(5) (2021) 39. https://doi.org/10.3390/inorganics9050039
Meng, X., Li, Z., & Zhang, Z., Chemosphere 198 (2018) 1-12. https://doi.org/10.1016/j.chemosphere.2018.01.070
Huang, T., et al., J. Environ. Chem. Eng. 8(5) (2020) 104384. https://doi.org/10.1016/j.jece.2020.104384
Phan, T.T.N., et al., Appl. Surf. Sci. 491 (2019) 488-496. https://doi.org/10.1016/j.apsusc.2019.06.133
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2021-BKA-15