Sol-gel synthesis and characterization of neodymium orthoferrite for disposing oily wastewater
DOI:
https://doi.org/10.51316/jca.2023.027Keywords:
NdFeO3, sol-gel, photo-Fenton, visible light, oily wastewaterAbstract
The aim of this study was to design and characterize a NdFeO3-based photocatalyst prepared by sol-gel method for treatment of oily wastewater. Different characterization techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), UV–vis spectrophometer were used to elucidate the structure, morphology, surface functional groups, and optical absorption properties of the prepared NdFeO3 photocatalyst. The photo-Fenton degradation performance of the as-prepared NdFeO3 photocatalyst was investigated by degrading oily-containing wastewater under visible light irradiation. The NdFeO3 photocatalyst manifests the high chemical oxygen demand (COD) removal efficiency of 97.6 % for 120 min reaction) thanks to its narrow band gap energy and high crystalline degree.
Downloads
References
De-Nasri, S.J., et al., Chem. Engi. J. 420 (2021) 127560. https://doi.org/10.1016/j.cej.2020.127560
Hernández-Coronado, E.E., et al., J. Environ. Chem. Eng. 9(6) (2021) 106822. https://doi.org/10.1016/j.jece.2021.106822
Hassaan, M., et al., Egyptian J. Chem. 63(4) (2020) 1443-1459. http://doi.org/10.21608/EJCHEM.2019.15799.1955
Li, J., et al., J. Environ. Chem. Eng. (2022) 108329. https://doi.org/10.1016/j.jece.2022.108329
Rajaitha, P.M., et al., J. Alloys Compd. 915 (2022) 165402. https://doi.org/10.1016/j.jallcom.2022.165402
Quiñonero, J., et al., ACS Appl. Mater. Inter. 13(12) (2021) 14150-14159. https://doi.org/10.1021/acsami.0c21792
Tongyun, C., et al., J. Rare Earths 30(11) (2012) 1138-1141. https://doi.org/10.1016/S1002-0721(12)60194-X
Prabagar, J.S., et al., Mater. Today: Proceedings 75 (2023) 15-23. https://doi.org/10.1016/j.matpr.2022.10.230
Omari, E. and M. Omari, Inter. J. Hydro. Ener. 47(32) (2022) 14542-14551. https://doi.org/10.1016/j.ijhydene.2022.02.197
Khorasani-Motlagh, M., et al., Inter. J. Nanosci. Nanotechnol. 9(1) (2013) 7-14.
Shanker, J., et al., Phys. Letters A 382(40) (2018) 2974-2977. https://doi.org/10.1016/j.physleta.2018.07.002
Wang, Y., et al., CrystEngComm 16(5) (2014) 858-862. https://doi.org/10.1039/C3CE41434E
Yousefi, M., S. Zeid, and M. Khorasani-Motlagh, Current Chem. Let. 6(1) (2017) 23-30. http://doi.org/10.5267/j.ccl.2016.10.002
Pokhriyal, P., et al., ECS J. Solid State Sci. Technol. 10(7) (2021) 073005.
Danks, A.E., S.R. Hall, and Z. Schnepp, Mater. Horizons 3(2) (2016) 91-112. http://doi.org/10.1149/2162-8777/ac10cc
Shlapa, Y., S. Solopan, and A. Belous, J. Mag. Mag. Mater. 510 (2020) 166902. https://doi.org/10.1016/j.jmmm.2020.166902
Li, C., et al., J. Phys. Chem. Solids 113 (2018) 151-156. https://doi.org/10.1016/j.jpcs.2017.10.039
Albadi, Y., et al., Inorganics 9(5) (2021) 39. https://doi.org/10.3390/inorganics9050039
Wang, Y., et al., Mater. Let. 60(13-14) (2006) 1767-1770. https://doi.org/10.1016/j.matlet.2005.12.015
Xu, L., et al., World J. Nanosci. Eng. 2 (2012) 154-160. http://doi.org/10.4236/wjnse.2012.23020
Li, X., et al., Chem. Mater. 22(17) (2010) 4879-4889. https://doi.org/10.1021/cm101419w
Singh, S., et al., Sensors Actuat. B: Chem. 177 (2013) 730-739. https://doi.org/10.1016/j.snb.2012.11.096
Ren, G., et al., Nanomater. 11(7) (2021) 1804. https://doi.org/10.3390/nano11071804
Phan, T.T.N., T.T.N. Phan, and T.H. Pham, J. Porous Mater. (2022) 1-12. https://doi.org/10.1007/s10934-022-01378-z
Phan, T.T.N., et al., Appl. Surf. Sci. 491 (2019) 488-496. https://doi.org/10.1016/j.apsusc.2019.06.133
Downloads
Published
Issue
Section
How to Cite
Share
Funding data
-
Bộ Giáo dục và Ðào tạo
Grant numbers B2021-BKA-15