Characterization and photocatalytic properties of ZnO - Fe3O4 composite
DOI:
https://doi.org/10.62239/jca.2024.012Keywords:
ZnO, Fe3O4, Photocatalysis, Levofloxacin, ReusedAbstract
In this study, ZnO/Fe3O4 (MZ) composite material was successfully synthesized with the combination of ZnO and Fe3O4. The obtained materials were characterized by XRD, SEM, TEM, BET, VSM, and UV-Vis DRS methods. MZ composite had the ability of photocatalytic degradation of antibiotic levofloxacin (LFX) in aqueous solutions under sunlight. The results showed that the photocatalytic degradation of LFX increased as the lighting time increased and decreased as the initial concentration of LFX increased. The kinetic of LFX photocatalytic degradation by MZ followed the Langmuir – Hinshelwood pseudo-first-order kinetic model. The material had good reusability after five cycles.
Downloads
References
A. A. Yaqoob, N. H. B. M. Noor, A. Serrà, and M. N. M. Ibrahim. Nanomaterials 10 (5) (2020) 932. https://doi.org/10.3390/nano10050932.
M. Bandeira, M. Giovanela, M. Roesch-ely, D. M. Devine, and S. Crespo. Sustain. Chem. Pharm. 15 (2020) 100223. https://doi.org/10.1016/j.scp.2020.100223.
Zheng, A.L.T., Abdullah, C.A.C., Chung, E.L.T. et al. Int. J. Environ. Sci. Technol 20 (2023) 5753–5772. https://doi.org/10.1007/s13762-022-04354-x
C. B. Ong, L. Y. Ng, and A. W. Mohammad, Renew. Sustain. Energy Rev. 81 (2018) 536–551. https://doi.org/10.1016/j.rser.2017.08.020
A. M. Gutierrez, T. D. Dziubla, and J. Z. Hilt. Rev. Environ. Health 32(1–2) (2017) 111–117.
https://doi.org/10.1515/reveh-2016-0063.
S. K. Panda et al., Environ. Chem. Lett. 19(3) (2021) 2487–2525. https://doi.org/10.1007/s10311-020-01173-9
L. Mohammed, H. G. Gomaa, D. Ragab, and J. Zhu. Particuology 30 (2017) 1–14. https:// doi.org/10.1016/J.PARTIC.2016.06.001
K. Kavosi Rakati, M. Mirzaei, S. Maghsoodi, and A. Shahbazi. Int. J. Biol. Macromol 130 (2019) 1025–1045. https://doi.org/10.1016/J.IJBIOMAC.2019.02.033
J. Xia, A. Wang, X. Liu, and Z. Su. Appl. Surf. Sci 257(23) (2011) 9724–9732. https://doi.org/10.1016/j.apsusc.2011.05.114
O. Dlugosz, K. Szostak, M. Krupiński, and M. Banach. Int. J. Environ. Sci. Technol 18(3) (2021) 561–574. https://doi.org/10.1007/s13762-020-02852-4
N. T. Nguyen, N. T. Nguyen, and V. A. Nguyen. Adv. Polym. Technol 2020 (2020) 1–8. https://doi.org/10.155/2020/3892694
A. Sirivat and N. Paradee. Mater. Des. 181 (2019) 107942.
https://doi.org/10.116/J.MATDES.2019.107942
Á. de J. Ruíz-Baltazar, Set et al. Results Phys 12 (2019) 989–995. https://doi.org/10.1016/J.RINP.2018.12.037
V. M. Thanh et al. J. Nanomater., 2020, 2020, 1-9. https://doi.org/10.1155/2020/8875471.
N. Thị Lan et al., Vietnam Journal of Catalysis and Adsorption 11(4) (2022) 44–49. https://doi.org/10.51316/jca.2022.068
H. Benhebal, M. Chaib, T. Salmon, D. Lambert, M. Crine, and B. Heinrichs. Alexandria Engineering Journal 52 (2013) 517–523. https://doi.org/10.1016/j.aej.2013.04.005
D. Nasuhoglu, V. Yargeau, and D. Berk, J. Hazard. Mater. 186(1) (2011) 67–75. https://doi.org/10.1016/J.JHAZMAT.2010.10.080
N. Roy, S. A. Alex, N. Chandrasekaran, K. Kannabiran, and A. Mukherjee. J. Environ. Manage 303 (2022) 114128. https://doi.org/10.1016/J.JENVMAN.2021.114128
P. Liu, Y. Liu, W. Ye, J. Ma, and D. Gao. Nanotechnology, 27(22) (2016) 225403. https://doi.org/10.1088/0957-4484/27/22/225403
Y. Li, S. Sun, M. Ma, Y. Ouyang, and W. Yan. Chem. Eng. J 142(2) (2008) 147–155. https://doi.org/10.1016/j.cej.2008.01.009
I. Kazeminezhad and A. Sadollahkhani. Mater. Lett 120 (2014) 267–270. https:// doi.org/10.1016/j.matlet.2014.01.118
S. Goktas and A. Goktas. J. Alloys Compd 863 (2021) 158734. https://doi.org/10.1016/j.jallcom.2021.158734