Investigation of the Ni(II) adsorption isotherm onto biochar derived from cassava stem

Authors

  • Dinh Van Phuc Nguyen Tat Thanh University
  • Nguyen Thanh Hung Nguyen Tat Thanh University
  • Truong Thi Thanh Van Nguyen Tat Thanh University
  • Le Nguyen Trung Tin Nguyen Tat Thanh University
  • Pham Nguyen Kim Tuyen Saigon University

DOI:

https://doi.org/10.62239/jca.2025.055

Keywords:

Cassava stem, Biochar, Adsorption, Wastewater

Abstract

In this study, biochar was synthesized from Cassava stem via a pyrolysis at 700 oC within 60 minutes. This biochar was used as an adsorbent to remove Ni(II) from an aqueous solution. Effects of pH, adsorption time, and initial concentration of Ni were investigated. Results showed that the adsorption of Ni(II) onto biochar derived from Cassava stem obtained the maximum at pH = 8 and adsorption time = 1080 min with maximum adsorption capacity calculated from Langmuir of 31.77 mg/g. Isotherm and kinetic studies indicated that the Sips model gave the best fit with experimental data. This study shows the potential application of Cassava stem biochar on the treatment of polluted Ni(II) wastewater.

Downloads

Download data is not yet available.

References

QCVN 08:2023/BTNMT, Quy chuẩn kỹ thuật quốc gia về chất lượng nước mặt (2023).

QCVN 40:2011/BTNMT, Quy chuẩn kỹ thuật quốc gia về nước thải công nghiệp (2011).

R. Kiran, R. Bharti, R. Sharma, Mater. Today Proc., 51 (2022) 880–885, https://doi.org/10.1016/j.matpr.2021.06.278

G. Genchi, A. Carocci, G. Lauria, M.S. Sinicropi, A. Catalano, Int. J. Environ. Res. Public Health, 17(3) (2020) 679, https://doi.org/10.3390/ijerph17030679

W. Begum, S. Rai, S. Banerjee, S. Bhattacharjee, M.H. Mondal, A. Bhattarai, B. Saha, RSC Adv., 12(15) (2022) 9139–9153, https://doi.org/10.1039/d2ra00378c

R.S.B. Fischer, J.M. Unrine, C. Vangala, W.T. Sanderson, S. Mandayam, K.O. Murray, PLoS One, 15(11) (2020) e0240988, https://doi.org/10.1371/journal.pone.0240988

K. Dermentzis, J. Hazard. Mater., 173(1–3) (2010) 647–652, https://doi.org/10.1016/j.jhazmat.2009.08.133

F. Fu, Q. Wang, J. Environ. Manage., 92(3) (2011) 407–418, https://doi.org/10.1016/j.jenvman.2010.11.011

M. Ghasemi, M. Naushad, N. Ghasemi, Y. Khosravi-Fard, J. Ind. Eng. Chem., 20(4) (2014) 2193–2199, https://doi.org/10.1016/j.jiec.2013.09.050

Z. Shen, Y. Zhang, O. McMillan, F. Jin, A. Al-Tabbaa, Environ. Sci. Pollut. Res., 24(14) (2017) 12809–12819, https://doi.org/10.1007/s11356-017-8847-2

Y. Deng, S. Huang, D.A. Laird, X. Wang, Z. Meng, Chemosphere, 218 (2019) 308–318, https://doi.org/10.1016/j.chemosphere.2018.11.081

K. Iamsaard, C.H. Weng, L.T. Yen, J.H. Tzeng, C. Poonpakdee, Y.T. Lin, Bioresour. Technol., 344(A) (2022) 126131, https://doi.org/10.1016/j.biortech.2021.126131

D. Anitha, A. Ramadevi, R. Seetharaman, Mater. Today Proc., 45 (2021) 718–722, https://doi.org/10.1016/j.matpr.2020.02.748

L.T.H. Phan, T.T.T. Hiền, Khoa học & Công nghệ, 22 (2019) 42–47.

J.K. Singh, N. Verma, Aqueous Phase Adsorption – Theory, Simulations and Experiments, CRC Press (2019).

M.A. Al-Ghouti, D.A. Da’ana, J. Hazard. Mater., 393 (2020) 122383, https://doi.org/10.1016/j.jhazmat.2020.122383

K.Y. Foo, B.H. Hameed, Chem. Eng. J., 156(1) (2010) 2–10, https://doi.org/10.1016/j.cej.2009.09.013

L.M. Ferreira, R.R. de Melo, A.S. Pimenta, T.K.B. de Azevedo, C.B. de Souza, Biomass Convers. Bioref., 12(4) (2020) 1181–1192, https://doi.org/10.1007/s13399-020-00660-x

K.V. Kumar et al., J. Mater. Chem. A, 7(17) (2019) 10104–10137, https://doi.org/10.1039/c9ta00287a

M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem., 87(9–10) (2015) 1051–1069, https://doi.org/10.1515/pac-2014-1117

Y. Xie et al., Ecotoxicol. Environ. Saf., 230 (2022) 113107, https://doi.org/10.1016/j.ecoenv.2021.113107

Z. Cai, C. Jiang, X.F. Xiao, Y.S. Zhang, L. Liang, IOP Conf. Ser.: Mater. Sci. Eng., 359(1) (2018) 012046, https://doi.org/10.1088/1757-899X/359/1/012046

S. Daffalla, Int. J. Mol. Sci., 26(17) (2023) 8499, https://doi.org/10.3390/ijms26178499

V.-P. Dinh, Z. Li, E. Ye, in: Z. Li, J. Zheng, E. Ye (Eds.), Sustainable Nanotechnology, RSC Publ., (2022) 144–162.

N. Fiol, I. Villaescusa, Environ. Chem. Lett., 7(1) (2008) 79–84, https://doi.org/10.1007/s10311-008-0139-0

S. Wang, J.H. Kwak, M.S. Islam, M.A. Naeth, M.G. El-Din, S.X. Chang, Sci. Total Environ., 712 (2020) 136538, https://doi.org/10.1016/j.scitotenv.2020.136538

Z. Shen et al., Environ. Sci. Pollut. Res., 25(15) (2018) 14626–14635, https://doi.org/10.1007/s11356-018-1674-2

Z. Mahdi, Q.J. Yu, A. El Hanandeh, J. Environ. Chem. Eng., 6(1) (2018) 1171–1181, https://doi.org/10.1016/j.jece.2018.01.021

M. Kılıç, Ç. Kırbıyık, Ö. Çepelioğullar, A.E. Pütün, Appl. Surf. Sci., 283 (2013) 856–862, https://doi.org/10.1016/j.apsusc.2013.07.033

V.G. Georgieva, L. Gonsalvesh, M.P. Tavlieva, J. Mol. Liq., 312 (2020) 112788, https://doi.org/10.1016/j.molliq.2020.112788

X. Chen, Q. Zhang, V. Achal, J. Environ. Eng. Sci., 15(3) (2020) 99–106, https://doi.org/10.1680/jenes.19.00026

Published

21-11-2025

Issue

Section

VNACA2025

How to Cite

Investigation of the Ni(II) adsorption isotherm onto biochar derived from cassava stem. (2025). Vietnam Journal of Catalysis and Adsorption, 14(4), 7-12. https://doi.org/10.62239/jca.2025.055

Share

Funding data

Most read articles by the same author(s)