Investigation of the Ni(II) adsorption isotherm onto biochar derived from cassava stem
DOI:
https://doi.org/10.62239/jca.2025.055Keywords:
Cassava stem, Biochar, Adsorption, WastewaterAbstract
In this study, biochar was synthesized from Cassava stem via a pyrolysis at 700 oC within 60 minutes. This biochar was used as an adsorbent to remove Ni(II) from an aqueous solution. Effects of pH, adsorption time, and initial concentration of Ni were investigated. Results showed that the adsorption of Ni(II) onto biochar derived from Cassava stem obtained the maximum at pH = 8 and adsorption time = 1080 min with maximum adsorption capacity calculated from Langmuir of 31.77 mg/g. Isotherm and kinetic studies indicated that the Sips model gave the best fit with experimental data. This study shows the potential application of Cassava stem biochar on the treatment of polluted Ni(II) wastewater.
Downloads
References
QCVN 08:2023/BTNMT, Quy chuẩn kỹ thuật quốc gia về chất lượng nước mặt (2023).
QCVN 40:2011/BTNMT, Quy chuẩn kỹ thuật quốc gia về nước thải công nghiệp (2011).
R. Kiran, R. Bharti, R. Sharma, Mater. Today Proc., 51 (2022) 880–885, https://doi.org/10.1016/j.matpr.2021.06.278
G. Genchi, A. Carocci, G. Lauria, M.S. Sinicropi, A. Catalano, Int. J. Environ. Res. Public Health, 17(3) (2020) 679, https://doi.org/10.3390/ijerph17030679
W. Begum, S. Rai, S. Banerjee, S. Bhattacharjee, M.H. Mondal, A. Bhattarai, B. Saha, RSC Adv., 12(15) (2022) 9139–9153, https://doi.org/10.1039/d2ra00378c
R.S.B. Fischer, J.M. Unrine, C. Vangala, W.T. Sanderson, S. Mandayam, K.O. Murray, PLoS One, 15(11) (2020) e0240988, https://doi.org/10.1371/journal.pone.0240988
K. Dermentzis, J. Hazard. Mater., 173(1–3) (2010) 647–652, https://doi.org/10.1016/j.jhazmat.2009.08.133
F. Fu, Q. Wang, J. Environ. Manage., 92(3) (2011) 407–418, https://doi.org/10.1016/j.jenvman.2010.11.011
M. Ghasemi, M. Naushad, N. Ghasemi, Y. Khosravi-Fard, J. Ind. Eng. Chem., 20(4) (2014) 2193–2199, https://doi.org/10.1016/j.jiec.2013.09.050
Z. Shen, Y. Zhang, O. McMillan, F. Jin, A. Al-Tabbaa, Environ. Sci. Pollut. Res., 24(14) (2017) 12809–12819, https://doi.org/10.1007/s11356-017-8847-2
Y. Deng, S. Huang, D.A. Laird, X. Wang, Z. Meng, Chemosphere, 218 (2019) 308–318, https://doi.org/10.1016/j.chemosphere.2018.11.081
K. Iamsaard, C.H. Weng, L.T. Yen, J.H. Tzeng, C. Poonpakdee, Y.T. Lin, Bioresour. Technol., 344(A) (2022) 126131, https://doi.org/10.1016/j.biortech.2021.126131
D. Anitha, A. Ramadevi, R. Seetharaman, Mater. Today Proc., 45 (2021) 718–722, https://doi.org/10.1016/j.matpr.2020.02.748
L.T.H. Phan, T.T.T. Hiền, Khoa học & Công nghệ, 22 (2019) 42–47.
J.K. Singh, N. Verma, Aqueous Phase Adsorption – Theory, Simulations and Experiments, CRC Press (2019).
M.A. Al-Ghouti, D.A. Da’ana, J. Hazard. Mater., 393 (2020) 122383, https://doi.org/10.1016/j.jhazmat.2020.122383
K.Y. Foo, B.H. Hameed, Chem. Eng. J., 156(1) (2010) 2–10, https://doi.org/10.1016/j.cej.2009.09.013
L.M. Ferreira, R.R. de Melo, A.S. Pimenta, T.K.B. de Azevedo, C.B. de Souza, Biomass Convers. Bioref., 12(4) (2020) 1181–1192, https://doi.org/10.1007/s13399-020-00660-x
K.V. Kumar et al., J. Mater. Chem. A, 7(17) (2019) 10104–10137, https://doi.org/10.1039/c9ta00287a
M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem., 87(9–10) (2015) 1051–1069, https://doi.org/10.1515/pac-2014-1117
Y. Xie et al., Ecotoxicol. Environ. Saf., 230 (2022) 113107, https://doi.org/10.1016/j.ecoenv.2021.113107
Z. Cai, C. Jiang, X.F. Xiao, Y.S. Zhang, L. Liang, IOP Conf. Ser.: Mater. Sci. Eng., 359(1) (2018) 012046, https://doi.org/10.1088/1757-899X/359/1/012046
S. Daffalla, Int. J. Mol. Sci., 26(17) (2023) 8499, https://doi.org/10.3390/ijms26178499
V.-P. Dinh, Z. Li, E. Ye, in: Z. Li, J. Zheng, E. Ye (Eds.), Sustainable Nanotechnology, RSC Publ., (2022) 144–162.
N. Fiol, I. Villaescusa, Environ. Chem. Lett., 7(1) (2008) 79–84, https://doi.org/10.1007/s10311-008-0139-0
S. Wang, J.H. Kwak, M.S. Islam, M.A. Naeth, M.G. El-Din, S.X. Chang, Sci. Total Environ., 712 (2020) 136538, https://doi.org/10.1016/j.scitotenv.2020.136538
Z. Shen et al., Environ. Sci. Pollut. Res., 25(15) (2018) 14626–14635, https://doi.org/10.1007/s11356-018-1674-2
Z. Mahdi, Q.J. Yu, A. El Hanandeh, J. Environ. Chem. Eng., 6(1) (2018) 1171–1181, https://doi.org/10.1016/j.jece.2018.01.021
M. Kılıç, Ç. Kırbıyık, Ö. Çepelioğullar, A.E. Pütün, Appl. Surf. Sci., 283 (2013) 856–862, https://doi.org/10.1016/j.apsusc.2013.07.033
V.G. Georgieva, L. Gonsalvesh, M.P. Tavlieva, J. Mol. Liq., 312 (2020) 112788, https://doi.org/10.1016/j.molliq.2020.112788
X. Chen, Q. Zhang, V. Achal, J. Environ. Eng. Sci., 15(3) (2020) 99–106, https://doi.org/10.1680/jenes.19.00026
Published
Issue
Section
License
Copyright (c) 2025 Dinh Van Phuc, Nguyen Thanh Hung, Truong Thi Thanh Van, Le Nguyen Trung Tin, Pham Nguyen Kim Tuyen

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Share
Funding data
-
Trường Đại học Nguyễn Tất Thành
Grant numbers 2024.01.106/HĐ-KHCN








