Treatment of wastewater from the flocculation process of waste cutting fluid by zerovalent iron catalyst

Authors

  • Le Thi Thu Hang School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author
  • Pham Thi Mai Phuong Advanced Institute of Science and Technology, Hanoi University of Science and Technology, Hanoi, Vietnam Author
  • Hoang Huu Hiep School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author
  • Chu Thi Hai Nam School of Chemical Engineering, Hanoi University of Science and Technology, Vietnam Author

DOI:

https://doi.org/10.51316/jca.2022.057

Keywords:

Waste cutting fluid, iron catalyst, wastewater treatment

Abstract

Waste cutting fluids are considered as hazardous wastes because they contain numerous different components causing environmental problems. Normally, a flocculation method is applied to treat preliminarily. However, the output wastewater still needs treating further to meet the national standards of industrial wastewater before disposal. So, this research reports the secondary treatment stage of the waste cutting fluid collected from an industrial factory in Vietnam using zero valent iron (ZVI) catalyst. This catalyst was synthesized via a redox reaction between sodium borohydride (NaBH4) and ferric chloride (FeCl3). Key factors affecting the quality of the ZVI particles such as the concentration of the NaBH4 reductant, reaction temperature, and dropping rate were investigated systematically. At the optimum synthesis conditions, viz. the NaBH4 concentration of 0.2 M, reaction temperature of 25 oC and the dropping rate of 3 ml/min, the synthesized ZVI exhibited a narrow range of particle size distribution with a mean size of 3.9 μm, followed by a high surface area, and good catalytic activity. As a catalyst for secondary treatment of the waste cutting fluid, the synthesized ZVI demonstrated a moderate chemical oxygen demand (COD) removal performance of  49%, corresponding to COD reduction for from 4023 mg/l to about 2059 mg/l.

Downloads

Download data is not yet available.

References

Sánchez-Oneto, J.R. Portela, E. Nebot, E. Martínez de la Ossa. J. Hazard. Mater, 2007, 144, 639-644. https://doi.org/10.1016/j.jhazmat.2007.01.088

P. Rajasulochana, V. Preethy. Resource-Efficient Technologies, 2016, 2, 175-184. https://doi.org/10.1016/j.reffit.2016.09.004

S. Ma, K. Kim, J. Huh, D.E. Kim, S. Lee, Y. Hong. Sep. Purif. Technol., 2018, 199, 289-297. https:// doi.org/10.1016/J.SEPPUR.2018.02.005

C.T. Hai Nam, N.T. Thu Hien, N.T. Thu Huyen, H.H. Hiep, N.T. Thuong. Journal of Chemistry, 2021, 2021, 7248402.

https://doi.org/doi.org/10.1155/2021/7248402

QCVN 40:2011/BTNMT National Technical Regulation on Industrial Wastewater. Minister of Natural Resources and Environment, 2011.

T.A. Aragaw, F.M. Bogale, B.A. Aragaw. J. Saudi Chem. Soc., 2021, 25, 101280. https://doi.org/10.1016/j.jscs.2021.101280

H. Wu, W. Wei, C. Xu, Y. Meng, W. Bai, W. Yang, A. Lin. Ecotoxicol. Environ. Saf, 2020, 188, 109902. https://doi.org/10.1016/j.ecoenv.2019.109902

Y. Hu, X. Peng, Z. Ai, F. Jia, L. Zhang. Environ. Sci. Technol., 2019, 53, 8333-8341. https://doi.org/10.1021/acs.est.9b01999

X. He, X. Min, T. Peng, F. Zhao, Y. Ke, Y. Wang, G. Jiang, Q. Xu, J. Wang. J. Chem. Eng. Data, 2020, 65, 1936-1945.

https://pubs.acs.org/doi/10.1021/acs.jced.9b01110?goto=supporting-info

M. Liu, Y. Wang, L. Chen, Y. Zhang, Z. Lin. ACS Appl. Mater. Interfaces, 2015, 7, 7961-7969. https://doi.org/doi.org/10.1021/am509184e

L. Liang, X. Guan, Z. Shi, J. Li, Y. Wu, P.G. Tratnyek. Environ. Sci. Technol., 2014, 48, 6326-6334. https://doi.org/doi.org/10.1021/es500958b

H. Yu, T. Zhang, Z. Jing, J. Xu, F. Qiu, D. Yang, L. Yu. Chem. Eng. Sci., 2019, 205, 278-286. https://doi.org/10.1016/j.ces.2019.05.012

J.C. Koenig, H.K. Boparai, M.J. Lee, D.M. O’Carroll, R.J. Barnes, M.J. Manefield. J. Hazard. Mater., 2016, 308, 106-112. https://doi.org/10.1016/j.envint.2019.01.030

F. He, Z. Li, S. Shi, W. Xu, H. Sheng, Y. Gu, Y. Jiang, B. Xi, Environ. Sci. Technol., 2018, 52, 8627-8637. https://doi.org/10.1021/acs.est.8b01735

C. Tan, Y. Dong, D. Fu, N. Gao, J. Ma, X. Liu. Chem. Eng. J., 2018, 334,1006-1015. https://doi.org/10.1016/j.cej.2017.10.020

S. Rodriguez, L. Vasquez, A. Romero, A. Santos. Ind. Eng. Chem. Res., 2014, 53,12288-12294. https://doi.org/10.1021/ie501632e

O. Eljamal, R. Mokete, N. Matsunaga, Y. Sugihara. Chem. Eng., 2018, 6, 6207-6220. https://doi.org/10.1016/j.jece.2018.09.012

Y.-Y. Zhang, H. Jiang, Y. Zhang, J.-F. Xie. Chem. Eng. J., 2013, 229, 412-419. https://doi.org/10.1016/j.cej.2013.06.031

C.K. Remucal, C. Lee, D.L. Sedlak. Environ. Sci. Technol., 2011, 45, 3177-3178. https://doi.org/10.1021/es102401d

Published

30-10-2022

Issue

Section

Full Articles

How to Cite

Treatment of wastewater from the flocculation process of waste cutting fluid by zerovalent iron catalyst. (2022). Vietnam Journal of Catalysis and Adsorption, 11(3), 93-101. https://doi.org/10.51316/jca.2022.057

Share

Funding data

Similar Articles

1-10 of 204

You may also start an advanced similarity search for this article.