Effects of silica sources on the morphology and acid properties of SAPO-34 molecular sieves
Abstract
Silicon-substituted aluminophosphates SAPO-34 molecular sieve has been synthesized under hydrothermal condition by using triethylamine, tetraethylammonium hydroxide, and morpholine as organic structure-directing agents, with different silica sources, such as TEOS and colloidal silica. The extent and effects of silicon substitution on these materials have been investigated by X-ray diffraction, field emission scanning electron microscopy and energy-dispersive X-ray analysis. Their acidity has been measured quantitatively by temperature-programmed desorption of ammonia. Using TEOS as silica source may result in smaller particles, but a lower level of silicon substitution for aluminium and phosphorus compared to colloidal silica.
Downloads
References
S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, & E. M. Flanigen, J. Am. Chem. Soc., 104 (1982), 1146–1147.
E. Dumitriu, A. Azzouz, V. Hulea, D. Lutic, & H. Kessler, Microporous Mater., 10 (1997), 1–12.
G. Sastre & D. W. Lewis, J. Phys. Chem. B, 101, 27 (1997).
Z. Yan, B. Chen, & Y. H. Ã, Solid State Nucl. Magn. Reson., 35 (2009), 49–60.
B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan, & E. M. Flanigen, J. Am. Chem. Soc., 106, 8 (1984), 6092–6093
S. Askari, R. Halladj, & M. Sohrabi, Rev. Adv. Mater. Sci., 32, 2 (2012), 83–93.
M. Salmasi, S. Fatemi, & S. J. Hashemi, Sci. Iran., 19, 6 (2012), 1632–1637.
Q. Sun, Z. Xie, & J. Yu, Natl. Sci. Rev., 5, (2017), 542 - 558.
Yu, Q. Zhong, & S. Zhang, Microporous Mesoporous Mater., 234 (2016), 303–309.
S. Ashtekar, S. V. V Chilukuri, & D. K. Chakrabarty, J. Phys. Chem. B, 98, 18 (1994), 4878–4883.
K. Schnabel, R. Fricke, E. Jahn, E. Loffler, & P. Barbara, J. Chem. Soc. Faraday Trans., 87, 21 (1991), 3569–3574.
A. M. Prakash & S. Unnikrishnan, J. Chem. Soc. Faraday Trans., 101, 27 (1994), 2291–2296.
R. Vomscheid, M. J. Peltre, & D. Barthomeup, J. Phys. Chem. B, 98, 38 (1994), 9614–9618.
Derouane E. G., Detremerrie S., Gabelica Z., and Blom N., Appl. Catal. I, 1981, 201-224.
Tosheva & V. P. Valtchev, J. Am. Chem. Soc., 17, 10 (2005), 2494–2513
H. Van Heyden, S. Mintova, & T. Bein, Chem. Mater., 20 (2008), 2956–2963.
Y. Hirota, K. Murata, S. Tanaka, N. Nishiyama, & Y. Egashira, Mater. Chem. Phys., 123, 2–3 (2010), 507–509.
C. Kong, J. Zhu, S. Liu, & Y. Wang, RSC Adv., 7 (2017), 39889–39898.
Marchese, J. Chen, P. A. Wright, & J. M. Thomas, J. Phys. Chem. B, 97, 31 (1993), 8109–8112.
B. Zibrowius, E. Löffler, & M. Hunger, Zeolites, 12, 2 (1992), 167–174.
D. A. Tuan, N. N. Khang, D. L. Q. Phong, V. T. Huyen, L. M. Thang, & P. T. Huyen, Vietnam J. Catal. Adsorpt., 7, 3 (2018), 87–91.
C. Baerlocher, L. B. McCusker, & D. H. Olson, Atlas of Zeolite Framework types. Elsevier B.V., 2007.
A. Talesh, Iran. J. Chem. Chem. Eng., 30, 4 (2011), 29–36, 2011.
Z. Xu, RSC Adv., 7 (2017), 54866–54875.
Xu, A. Du, Y. Wei, Y. Wang, Z. Yu, & Y. He, Microporous Mesoporous Mater., 115 (2008), 332–337
Tan et al., Microporous Mesoporous Mater., 53 (2002), 97–108.
M. J. Schick & A. T. Hubbard, Colloidal Silica: Fundamentals and Applications. Taylor & Francis Group, LLC, 2006.
S. M. Alipour, R. Halladj, & S. Askari, Rev. Chem. Eng., 30, 3 (2014), 289–322.
S. Barot, K. C. Maheria, & R. Bandyopadhyay, J. Mater. Environ. Sci., 7, 3 (2016), 899–906.
S. Mintova & V. Valtchev, Microporous Mesoporous Mater., 55, 2 (2002), 171–179.
M. Campelo, F. Lafont, J. M. Marinas, & M. Ojeda, Appl. Catal. A Gen., 192 (2000), 85–96.
Chen et al., Catal. Sci. Technol., 4, 9 (2014), 3268–3277.
A. Haghighi, A. Mohammad, & S. Aghamohammadi, RSC Adv., 6, 56 (2016), 51024–51036.
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.