Large-scale synthesis of ZIF-94 with large specific surface area from zinc chloride
DOI:
https://doi.org/10.62239/jca.2025.068Keywords:
ZIF-94, zinc chloride, synthesis, characterization, large-scaleAbstract
ZIF-94 is a zeolitic imidazolate framework with a sodalite structure. The pore system in ZIF-94 is formed from Zn2+ tetrahedra linked together through imidazole 4-methyl-5-imidazolecarboxaldehyde, similar to the linkage of SiO4– and AlO4– tetrahedra in zeolites. ZIF-94 contains acid and base sites, the pore diameter is about 0.3 nm connected to large cavities of 0.91 nm. Therefore, ZIF-94 is considered a new generation advanced material with great potential for applications in catalysis and adsorption. Up to now, synthesized ZIF-94 has a low specific surface area, there has been no report synthesizing ZIF-94 from ZnCl2 on a large-scale. Therefore, this paper presents the first research results on the synthesis of ZIF-94 with the highest specific surface area (BET) reaching 1.128 m2/g, and is also the first time to report the synthesis results of ZIF-94 from ZnCl2 on a large-scale. ZIF-94 exhibits a crystallinity of 100%, an average crystal size of 85 nm, thermal stability up to 280 oC, and a yield of 73%.
Downloads
References
S. Aguado, J. Canivet, D. Farrusseng, Chem. Commun., 46(42) (2010) 7999–8001. https://doi.org/10.1039/C0CC02045A
W. Morris, N. He, K.G. Ray, P. Klonowski, H. Furukawa, I.N. Daniels, Y.A. Houndonougbo, M. Asta, O.M. Yaghi, B.B. Laird, J. Phys. Chem. C, 116(45) (2012) 24084–24090. https://doi.org/10.1021/jp307170a
T.N. Don, V.D. Thang, P.T. Huyen, P.M. Hao, N.K.D. Hong, Stud. Surf. Sci. Catal., 159 (2006) 197–200. https://doi.org/10.1016/S0167-2991(06)81567-3
H.K.D. Nguyen, N.T. Dinh, N.L.T. Nguyen, T.N. Don, J. Porous Mater., 24(2) (2017) 559–566. https://doi.org/10.1007/s10934-016-0291-z
H.K.D. Nguyen, T.N. Don, G. Sankar, R.A. Catlow, Catal. Commun., 25 (2012) 125–129. https://doi.org/10.1016/j.catcom.2011.11.016
T.N. Don, T.N. Hung, P.T. Huyen, T.X. Bai, H.T.T. Huong, N.T. Linh, L.V. Duong, M.H. Pham, Indian J. Chem. Technol., 23(5) (2016) 392–399. http://nopr.niscpr.res.in/handle/123456789/35507
H.K.D. Nguyen, D.N. Ta, H.N. Ta, J. Appl. Chem., 6(1) (2017) 50–68.
T.N. Don, L.V. Duong, N.T.H. Phuong, N.T.M. Thu, N.T.T. Huyen, T.X. Bai, T.N.T. Huy, D. Mo, N.T. Nghia, H.T.L. Anh, N.T. Linh, B.T.T. Ha, L.T.N. Quynh, T.T. Hai, Vietnam J. Catal. Adsorpt., 12(3) (2023) 1–16. https://doi.org/10.51316/jca.2023.041
M. Baias, A. Lesage, S. Aguado, J. Canivet, V. Moizan-Basle, N. Audebrand, D. Farrusseng, L. Emsley, Angew. Chem. Int. Ed., 54(20) (2015) 5971–5976. https://doi.org/10.1002/anie.201500518
T.N. Don, L.V. Duong, N.T.H. Phuong, N.T.M. Thu, N.T.T. Huyen, T.N.T. Huy, N.V. Thanh, D. Mu, N.T. Nghia, P.T.M. Huong, N.T. Linh, H.T.L. Anh, B.T.T. Ha, T.A. Vy, T.T. Hai, Vietnam J. Catal. Adsorpt., 12(4) (2023) 1–18. https://doi.org/10.62239/jca.2023.060
M. Etxeberria-Benavides, O. David, T. Johnson, M.M. Łozińska, A. Orsi, P.A. Wright, S. Mastel, R. Hillenbrand, F. Kapteijn, J. Gascon, J. Membr. Sci., 550 (2018) 198–207. https://doi.org/10.1016/j.memsci.2017.12.033
T. Johnson, M.M. Łozińska, A.F. Orsi, P.A. Wright, S. Hindocha, S. Poulston, Green Chem., 21(20) (2019) 5665-5674. https://doi.org/10.1039/c9gc00783k
T.T. Hai, P.T.M. Huong, T.N.T. Huy, H.T.L. Anh, D.N. Lam, P.Q. Huy, T.N. Don, Vietnam J. Catal. Adsorpt., 13(4) (2024) 79–84. https://doi.org/10.62239/jca.2024.078
T.T. Hai, T.T.T. Vy, L.N. Duong, N.T. Thao, P.T.M. Huong, T.N.T. Huy, L.N.T. Long, N.T.M. Thu, L.V. Duong, T.N. Don, Vietnam J. Catal. Adsorpt., 14(2) (2025) 38–42. https://doi.org/10.62239/jca.2025.022
T.T. Hai, P.T.M. Huong, L.V. Duong, T.N.T. Huy, H.T.L. Anh, L.T.N. Quynh, N.V. Quang, T.A. Vy, T.N. Don, Vietnam J. Catal. Adsorpt., 14(3) (2025) 111–117. https://doi.org/10.62239/jca.2025.047
L. Paseta, M. Malankowska, C. Téllez, J. Coronas, Mater. Chem. Phys., 295 (2023) 127039. https://doi.org/10.1016/j.matchemphys.2022.127039
T.N. Don, L.V. Duong, N.T.H. Phuong, N.T.T. Huyen, T.N.T. Huy, D. Mo, B.T.T. Ha, V.A. Tran, Can. J. Chem. Eng., 103(1) (2025) 311–322. https://doi.org/10.1002/cjce.25382
M.R. Hasan, L. Paseta, M. Malankowska, C. Téllez, J. Coronas, Adv. Sustain. Syst., 6(3) (2022) 2100317. https://doi.org/10.1002/adsu.202100317
Mercury - The Cambridge Crystallographic Data Centre (CCDC), https://www.ccdc.cam.ac.uk/solutions/csd-system/components/mercury/ (09/05/2020).
CCDC Structures, https://www.ccdc.cam.ac.uk/structures/ (09/05/2020).
F. Cacho-Bailo, M. Etxeberria-Benavides, O. Karvan, C. Téllez, J. Coronas, CrystEngComm, 19(12) (2017) 1545–1554. https://doi.org/10.1039/C7CE00086C
L. Martínez-Izquierdo, C. Téllez, J. Coronas, J. Mater. Chem. A, 10(35) (2022) 18822-18833. https://doi.org/10.1039/d2ta03958c
V. Berned-Samatán, L. Martínez-Izquierdo, E. Abás, C. Téllez, J. Coronas, Chem. Commun., 58(83) (2022) 11681-11684. https://doi.org/10.1039/d2cc03661d
M. Gao, J. Wang, Z. Rong, Q. Shi, J. Dong, RSC Adv., 8(69) (2018) 39627-39632. https://doi.org/10.1039/c8ra08460b
D.N. Ta, H.K.D. Nguyen, B.X. Trinh, Q.T.N. Le, H.N. Ta, H.T. Nguyen, Can. J. Chem. Eng., 96(7) (2018) 1518–1531. https://doi.org/10.1002/cjce.23155
D. Madhav, M. Malankowska, J. Coronas, New J. Chem., 44(47) (2020) 20449–20457. https://doi.org/10.1039/D0NJ04402D
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Trinh Thi Hai, Pham Thi Mai Huong, Le Van Duong, Pham Thanh Huyen, Ta Ngoc Thien Huy, Nguyen Khanh Dieu Hong, Ninh Thi Phuong, Ta Ngoc Don

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Share
Funding data
-
National Foundation for Science and Technology Development
Grant numbers NCUD.02-2023.05








