Exploring adsorbent potential: Investigating the characteristics of macadamia husk char from pilot-scale gasification
DOI:
https://doi.org/10.62239/jca.2024.068Keywords:
macadamia residues, gasification, pilot scale, CO2 adsorbentAbstract
Establishing a comprehensive database of char properties from pilot-scale gasification is crucial for identifying optimal applications for carbonaceous residues and advancing the sustainability of this technology. This study explores the intricate characteristics of macadamia husk char generated through pilot-scale gasification, highlighting its potential utility. The resulting char exhibits a porous structure primarily composed of micropores, with a heterogeneous distribution of inorganic minerals, notably K (12 mg g-1) and Ca (41 mg g-1), enhancing adsorption capabilities. Additionally, the surface is rich in oxygen-containing functional groups, such as carbonyl, carboxyl, and hydroxyl moieties, enhancing CO2 adsorption. The results emphasize the practicality of using macadamia husk for large-scale gasification, which can produce solid adsorbents. This dataset makes a substantial contribution to enhancing the sustainability of biomass gasification.
Downloads
References
International Nuts and Dried Fruits Council. Nuts and dried fruits statistical yearbook 2022/2023 [Internet]. International Nuts and Dried Fruits Council Foundation; 2023 [cited 2023 Jul 18].
Bada SO, Falcon RMS, Falcon LM, Makhula MJ. J South Afr Inst Min Metall. 115(8) (2015) 741–6. http://dx.doi.org/10.17159/2411-9717/2015/V115N8A10
Vu NL, Nguyen ND, Nguyen VD, Tran-Nguyen PL, Nguyen HV, Dinh TMT, Nguyen HN. Biomass Bioenergy. 171 (2023) 106735. https://doi.org/10.1016/j.biombioe.2023.106735
Linh Vu N, Nguyen ND, Thanh Dinh TM, Nguyen HN. Ind Crops Prod., 206 (2023) 117662. https://doi.org/10.1016/j.indcrop.2023.117662
Li K, Hostikka S, Dai P, Li Y, Zhang H, Ji J. Proc Combust Inst. 36(2) (2017) 3185–3194. https://doi.org/10.1016/j.proci.2016.07.001
You S, Ok YS, Tsang DCW, Kwon EE, Wang CH. Towards practical application of gasification: a critical review from syngas and biochar perspectives. Crit Rev Environ Sci Technol. 48(22–24) (2018) 1165–1213. https://doi.org/10.1080/10643389.2018.1518860
Marescaux A, Thieu V, Garnier J. Sci Total Environ. 643 (2018) 247–259. https://doi.org/10.1016/j.scitotenv.2018.06.151
Dutcher B, Fan M, Russell AG. ACS Appl Mater Interfaces. 7(4) (2015) 2137–2148. https://doi.org/10.1021/am507465f
Vega F, Cano M, Camino S, Navarrete B, Camino JA. Int J Greenh Gas Control. 73 (2018) 95–103. https://doi.org/10.1016/j.ijggc.2018.04.005
Madzaki H, KarimGhani WAWAB, NurZalikhaRebitanim, AzilBahariAlias. Procedia Eng. 148 (2016) 718–725. https://doi.org/10.1016/j.proeng.2016.06.591
Promraksa A, Rakmak N. Heliyon. 6(5) (2020) e04019. https://doi.org/10.1016/j.heliyon.2020.e04019
Yuan JH, Xu RK, Zhang H. Bioresour Technol. 102(3) (2011) 3488–97. https://doi.org/10.1016/j.biortech.2010.11.018
Xu R kou, Zhao A zhen, Yuan J hua, Jiang J. J Soils Sediments. 12(4) (2012) 494–502. https://doi.org/10.1007/s11368-012-0483-3
Dias D, Lapa N, Bernardo M, Godinho D, Fonseca I, Miranda M, et al.. Waste Manag. 65 (2017) 186–194. https://doi.org/10.1016/j.wasman.2017.04.011
Brewer CE, Schmidt‐Rohr K, Satrio JA, Brown RC.. Environ Prog Sustain Energy. 28(3) (2009) 386–96. https://doi.org/10.1002/ep.10378
Benedetti V, Patuzzi F, Baratieri M. Appl Energy. 227 (2018) 92–99. https://doi.org/10.1016/j.apenergy.2017.08.076
Liu T, Fang Y, Wang Y.. Fuel. 87(4–5) (2008) 460–6. https://doi.org/10.1016/j.fuel.2007.06.019
Guizani C, Jeguirim M, Gadiou R, Escudero Sanz FJ, Salvador S. Energy. 112 (2016) 133–145. https://doi.org/10.1016/j.energy.2016.06.065
Deng L, Ye J, Jin X, Zhu T, Che D. Energy Procedia. 142 (2017) 401–406. https://doi.org/10.1016/j.egypro.2017.12.063
Dupont C, Nocquet T, Da Costa JA, Verne-Tournon C. Bioresour Technol. 102(20) (2011) 9743–9748. https://doi.org/10.1016/j.biortech.2011.07.016
Strandberg A, Holmgren P, Wagner DR, Molinder R, Wiinikka H, Umeki K, et al. Energy Fuels. 31(6) (2017) 6507–14. https://doi.org/10.1021/acs.energyfuels.7b00688
McKee DW. Fuel. 62(2) (1983) 170–175. https://doi.org/10.1016/0016-2361(83)90192-8
Trubetskaya A. Energies. 15(9) (2022) 3137. https://doi.org/10.3390/en15093137
Walton KS, Abney MB, Douglas LeVan M. Microporous Mesoporous Mater. 91(1–3) (2006) 78–84. https://doi.org/10.1016/j.micromeso.2005.11.023
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.