Exploring adsorbent potential: Investigating the characteristics of macadamia husk char from pilot-scale gasification

Authors

  • Ngoc Linh Vu University of Engineering and Technology, Vietnam National University Author
  • Thi Mai Thanh Dinh University of Science and Technology of Hanoi Author
  • Thu Phuong Nguyen Institute for Tropical Technology, Vietnam Academy of Science and Technology Author
  • Phuong Thu Le University of Science and Technology of Hanoi Author
  • Thi Hai Do Hanoi University of Mining and Geology Author
  • Trung Dung Nguyen Le Quy Don Technical University Author
  • Nguyen Hong Nam University of Science and Technology of Hanoi Author

DOI:

https://doi.org/10.62239/jca.2024.068

Keywords:

macadamia residues, gasification, pilot scale, CO2 adsorbent

Abstract

Establishing a comprehensive database of char properties from pilot-scale gasification is crucial for identifying optimal applications for carbonaceous residues and advancing the sustainability of this technology. This study explores the intricate characteristics of macadamia husk char generated through pilot-scale gasification, highlighting its potential utility. The resulting char exhibits a porous structure primarily composed of micropores, with a heterogeneous distribution of inorganic minerals, notably K (12 mg g-1) and Ca (41 mg g-1), enhancing adsorption capabilities. Additionally, the surface is rich in oxygen-containing functional groups, such as carbonyl, carboxyl, and hydroxyl moieties, enhancing CO2 adsorption. The results emphasize the practicality of using macadamia husk for large-scale gasification, which can produce solid adsorbents. This dataset makes a substantial contribution to enhancing the sustainability of biomass gasification.

Downloads

Download data is not yet available.

References

International Nuts and Dried Fruits Council. Nuts and dried fruits statistical yearbook 2022/2023 [Internet]. International Nuts and Dried Fruits Council Foundation; 2023 [cited 2023 Jul 18].

Bada SO, Falcon RMS, Falcon LM, Makhula MJ. J South Afr Inst Min Metall. 115(8) (2015) 741–6. http://dx.doi.org/10.17159/2411-9717/2015/V115N8A10

Vu NL, Nguyen ND, Nguyen VD, Tran-Nguyen PL, Nguyen HV, Dinh TMT, Nguyen HN. Biomass Bioenergy. 171 (2023) 106735. https://doi.org/10.1016/j.biombioe.2023.106735

Linh Vu N, Nguyen ND, Thanh Dinh TM, Nguyen HN. Ind Crops Prod., 206 (2023) 117662. https://doi.org/10.1016/j.indcrop.2023.117662

Li K, Hostikka S, Dai P, Li Y, Zhang H, Ji J. Proc Combust Inst. 36(2) (2017) 3185–3194. https://doi.org/10.1016/j.proci.2016.07.001

You S, Ok YS, Tsang DCW, Kwon EE, Wang CH. Towards practical application of gasification: a critical review from syngas and biochar perspectives. Crit Rev Environ Sci Technol. 48(22–24) (2018) 1165–1213. https://doi.org/10.1080/10643389.2018.1518860

Marescaux A, Thieu V, Garnier J. Sci Total Environ. 643 (2018) 247–259. https://doi.org/10.1016/j.scitotenv.2018.06.151

Dutcher B, Fan M, Russell AG. ACS Appl Mater Interfaces. 7(4) (2015) 2137–2148. https://doi.org/10.1021/am507465f

Vega F, Cano M, Camino S, Navarrete B, Camino JA. Int J Greenh Gas Control. 73 (2018) 95–103. https://doi.org/10.1016/j.ijggc.2018.04.005

Madzaki H, KarimGhani WAWAB, NurZalikhaRebitanim, AzilBahariAlias. Procedia Eng. 148 (2016) 718–725. https://doi.org/10.1016/j.proeng.2016.06.591

Promraksa A, Rakmak N. Heliyon. 6(5) (2020) e04019. https://doi.org/10.1016/j.heliyon.2020.e04019

Yuan JH, Xu RK, Zhang H. Bioresour Technol. 102(3) (2011) 3488–97. https://doi.org/10.1016/j.biortech.2010.11.018

Xu R kou, Zhao A zhen, Yuan J hua, Jiang J. J Soils Sediments. 12(4) (2012) 494–502. https://doi.org/10.1007/s11368-012-0483-3

Dias D, Lapa N, Bernardo M, Godinho D, Fonseca I, Miranda M, et al.. Waste Manag. 65 (2017) 186–194. https://doi.org/10.1016/j.wasman.2017.04.011

Brewer CE, Schmidt‐Rohr K, Satrio JA, Brown RC.. Environ Prog Sustain Energy. 28(3) (2009) 386–96. https://doi.org/10.1002/ep.10378

Benedetti V, Patuzzi F, Baratieri M. Appl Energy. 227 (2018) 92–99. https://doi.org/10.1016/j.apenergy.2017.08.076

Liu T, Fang Y, Wang Y.. Fuel. 87(4–5) (2008) 460–6. https://doi.org/10.1016/j.fuel.2007.06.019

Guizani C, Jeguirim M, Gadiou R, Escudero Sanz FJ, Salvador S. Energy. 112 (2016) 133–145. https://doi.org/10.1016/j.energy.2016.06.065

Deng L, Ye J, Jin X, Zhu T, Che D. Energy Procedia. 142 (2017) 401–406. https://doi.org/10.1016/j.egypro.2017.12.063

Dupont C, Nocquet T, Da Costa JA, Verne-Tournon C. Bioresour Technol. 102(20) (2011) 9743–9748. https://doi.org/10.1016/j.biortech.2011.07.016

Strandberg A, Holmgren P, Wagner DR, Molinder R, Wiinikka H, Umeki K, et al. Energy Fuels. 31(6) (2017) 6507–14. https://doi.org/10.1021/acs.energyfuels.7b00688

McKee DW. Fuel. 62(2) (1983) 170–175. https://doi.org/10.1016/0016-2361(83)90192-8

Trubetskaya A. Energies. 15(9) (2022) 3137. https://doi.org/10.3390/en15093137

Walton KS, Abney MB, Douglas LeVan M. Microporous Mesoporous Mater. 91(1–3) (2006) 78–84. https://doi.org/10.1016/j.micromeso.2005.11.023

Published

30-12-2024

Issue

Section

Full Articles

How to Cite

Exploring adsorbent potential: Investigating the characteristics of macadamia husk char from pilot-scale gasification. (2024). Vietnam Journal of Catalysis and Adsorption, 13(4), 20-25. https://doi.org/10.62239/jca.2024.068

Share

Similar Articles

1-10 of 75

You may also start an advanced similarity search for this article.