Study on the formation of solid solution when synthesizing manganese-doped zinc alkaline earth silicate luminescent pigment by impregnation - precipitation method

Authors

  • Nguyen Thi Thanh School of Chemical Engineering, Hanoi University of Science and Technology Author
  • Le Xuan Thanh School of Chemical Engineering, Hanoi University of Science and Technology Author

DOI:

https://doi.org/10.51316/jca.2021.140

Keywords:

zinc silicate, luminescence, impregnation –preciptation

Abstract

This work refers to the research results on the ability to form solid solution when synthesizing the manganese-doped zinc alkaline earth silicate luminescent pigment in the form of Zn1,97-xMxMn0,03SiO4 (M is magnesium, calcium, strontium and barium) by the precipitation-impregnation method. The samples were characterized by thermal analysis, X-ray diffraction spectroscopy, luminescence under UV lamp and luminescence spectroscopy at 254 nm excitation wavelength. The results show that when heating the corresponding precipitated precursor at 900 oC for 45 minutes, in general, the ability to form solid solutions decreases when the size difference of alkaline earth metal ions with Zn2+ ions increases. Specifically, Mg2+ ions create single-phase solid solutions with x varying from 0 to 1. Ca2+ ions form solid solutions when x changes from 0 to 0.6. When x = 0.8; in addition to the main phase Zn2SiO4, it also creates Ca2ZnSi2O7 with tetragonal structure. The Ba2+ ions form solid solutions when x varies from 0 to 0.5. When x = 0.6, in addition to Zn2SiO4, there is also BaZn2Si2O7. The Sr2+ ions form a solid solution when x = 0.2. For samples with x ≥ 0.4, in addition to Zn2SiO4, there is also Sr2ZnSi2O7; SrZn2Si2O7/SrO.2ZnO.2SiO2. The single - phase solid solutions all have the rhombo H structure of Zn2SiO4, and all have higher luminescence than the multiphase samples. The sample with the largest x, the sample Zn0,97Mg1,0Mn0,03SiO4 had the highest luminescence, emitting green light corresponding to the wavelength of 525 nm when excited by 254 nm UV light.

Downloads

Download data is not yet available.

References

Takesue M., Hayashi H., Smith RL. Prog Cryst Growth Charact Mater. 55(3-4) (2009) 98-124. https://doi.org/10.1016/j.pcrysgrow.2009.09.001

Tuller HL. Wide. Kluwer Academic, 1997.

Wang C., Wang J., Jiang J., Xin S., Zhu G, J Alloys Compd. 814 (2020) 1-8. https://doi.org/10.1016/j.jallcom.2019.152340

Parmar MC, Zhuang WD, Murthy KVR, Huang XW, Hu YS, Natarajan V. R, Indian J. Eng. Mater. Sci. 16(3) (2009) 185-187.

Dang L, Tian C, Zhao S, Lu Q, J Cryst Growth, 491 (2018) 126-133. https://doi.org/10.1016/j.jcrysgro.2018.03.040

Krasnenko T. I., Zaitseva N. A., Ivanova I. V., Baklanova I. V., Samigullina RF, Rotermel M. V, J Alloys Compd 845 (2020) 1-8. https://10.1016/j.jallcom.2020.156296

Hao Y, Li X, Song L, Wang Y. Science and Engineering 166 (2010) 122-125. https://doi.org/10.1016/j.mseb.2009.10.012

Yu X, Wang Y. J Alloys Compd 497 (2010) 290-294. https://doi.org/10.1016/j.jallcom.2010.03.036

Sivakumar V, Lakshmanan A. J Lumin 145 (2014) 420-424. https://doi.org/10.1016/j.jlumin.2013.08.016

Sivakumar V, Lakshmanan A, Kalpana S, Sangeetha Rani R, Satheesh Kumar R, Jose MT, J Lumin 132 (2012) 1917-1920. https://doi.org/10.1016/j.jlumin.2012.03.007

Omar NAS, Fen YW, Matori KA, et al., J Mater Sci Mater Electron 27 (2016) 1092-1099. https://doi.org/10.1007/s10854-015-3856-8

Sohn KS, Cho B, Park HD, J Am Ceram Soc 82 (1999) 2779-2784. https://doi.org/10.1111/j.1151-2916.1999.tb02155.x

Popovici E-J, Ungur L, Ciocan C, et al. Proc. SPIE 4430 (2001) 297-303.

Petrovykh KA., Rempel AA., Kortov VS., Buntov EA, Inorg Mater. 51 (2015) 152-157. https://doi.org/10.1134/S0020168515020156

El Ghoul J, El Mir L. J Lumin 148 (2014) 82-88. https://doi.org/10.1016/j.jlumin.2013.11.090.

Omri K., El Mir L. I J Mater Sci Mater Electro, 27 (2016) 9476-9482. https://doi.org/10.1007/s10854-016-4996-1.

Buxbaum G, Pfaff G. Industrial Inorganic Pigments: Third Edition, (2005).

Rivera-Enríquez CE, Fernández-Osorio A, Chávez-Fernández J. J Alloys Compd. 688 (2016) 775-782, https://doi.org/10.1016/j.jallcom.2016.07.266

Le Xuan Thanh, Bui Thi Van Anh. Journal of chemistry and application, Vietnam Chemical Society. 4 (64) (2007) 32-34.

Published

30-01-2022

Issue

Section

Full Articles

How to Cite

Study on the formation of solid solution when synthesizing manganese-doped zinc alkaline earth silicate luminescent pigment by impregnation - precipitation method. (2022). Vietnam Journal of Catalysis and Adsorption, 10(1S), 264-269. https://doi.org/10.51316/jca.2021.140

Share

Similar Articles

1-10 of 47

You may also start an advanced similarity search for this article.