Facile synthesis of ultrasmall Bi2O3 nanoparticles for computed tomography imaging

Authors

  • Le Thi Thanh Tam Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, VIETNAM.
  • Nguyen Thi Yen Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, VIETNAM
  • Duong Thi Ngoc Hanoi National University of Education, 136 Xuan Thuy Road, Hanoi, VIETNAM
  • Ha Minh Nguyet Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, VIETNAM
  • Hoang Tran Dung Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, VIETNAM
  • Ngo Ba Thanh Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, VIETNAM.
  • Nguyen Tuan Dung Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, VIETNAM.
  • Ngo Thanh Dung Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, VIETNAM
  • Le Trong Lu Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, VIETNAM

DOI:

https://doi.org/10.62239/jca.2025.062

Keywords:

Bi2O3 nanoparticles, Polyacrylic acid coating, polyol synthesis, X-ray attenuation, CT contrast agent

Abstract

Ultrasmall bismuth oxide nanoparticles (Bi2O3 NP) are emerging as promising CT contrast agents owing to their high atomic number, strong X-ray attenuation, and versatile surface chemistry. Herein, we report a facile one-pot polyol synthesis of Bi2O3 NPs using triethylene glycol and polyacrylic acid (PAA), which acts as both surfactant and biocompatible coating. The obtained Bi2O3@PAA NPs exhibit an average core size of ~4.4 nm, uniform dispersion, and excellent aqueous stability. Their structural and surface characteristics were comprehensively confirmed by TEM, XRD, DLS, FTIR and TGA analyses. In vitro CT imaging experiments demonstrated that Bi2O3@PAA NPs produced a linear and concentration-dependent enhancement in Hounsfield units (HU), achieving an X-ray attenuation efficiency significantly higher than that of the commercial iodine-based contrast agent iobitridol under identical conditions. These findings highlight the potential of ultrasmall Bi2O3@PAA NPs as next-generation CT contrast agents.

Downloads

Download data is not yet available.

References

H. Lusic, M.W. Grinstaff, Chem. Rev. 113(3) (2013) 1641–1666. https://doi.org/10.1021/cr200358s

J. Hsieh, T. Flohr, J. Med. Imag. 8(5) (2021) 052109. https://doi.org/10.1117/1.JMI.8.5.052109

H. Sbitany, P.F. Koltz, C. Mays, J.A. Girotto, H.N. Langstein, Int. J. Surg. 8 (2010) 384–386. https://doi.org/10.1016/j.ijsu.2010.06.002

T.C. Owens, N. Anton, M.F. Attia, Acta Biomaterialia, 171 (2023) 19–36. https://doi.org/10.1016/j.actbio.2023.09.027

N. Gharehaghaji, B. Divband, F. Bakhtiari-Asl. BioNanoScience 10 (2020) 909–916. https://doi.org/10.1007/s12668-020-00787-1

M. Yektamanesh, Y. Ayyami, M. Ghorbani, M. Dastgir, R. Malekzadeh, T. Mortezazadeh, Int. J. Pharm. 659 (2024) 124264. https://doi.org/10.1016/j.ijpharm.2024.124264

I. Mutreja, N. Maalej, A. Kaushik, D. Kumar, A. Raja, Mater. Adv. 4 (2023) 3967-3988. https://doi.org/10.1039/D3MA00231D

M.Y. Ahmad, S. Liu, T. Tegafaw, A.K.A.A. Saidi, D. Zhao, Y. Liu, S.W. Nam, Y. Chang, G.H. Lee, Pharmaceuticals 16(10) (2023) 1463. https://doi.org/10.3390/ph16101463

A. Ghazanfari, S. Marasini, X. Miao, J.A. Park, K.-H. Jung, M.Y. Ahmad, H. Yue, S.L. Ho, S. Liu, Y.J. Jang, K.S. Chae, Y. Chang, G.H. Lee, Colloids Surf. A: Physicochem. Eng. Asp. 576 (2019) 73–81. https://doi.org/10.1016/j.colsurfa.2019.05.033

A.L. Brown, P.C. Naha, V. Benavides-montes, H.I. Litt, A.M. Goforth, D.P. Cormode, Chem. Mater. 26 (2014) 2266–2274. https://doi.org/10.1021/cm500077z

G. Shu, C. Zhang, Y. Wen, J. Pan, X. Zhang, S.K. Sun, Biomaterials 311 (2024) 122658. https://doi.org/10.1016/j.biomaterials.2024.122658

L.T.T. Tam, D.T. Ngoc, N.T.N. Linh, L.T. Tam, N.V. Dong, N.T. Yen, N.T. Suong, N.T. Dung, L.T. Lu, Nanoscale Adv. 7 (2025) 4183. https://doi.org/10.1039/D5NA00389J

R.M. El-Sharkawy, F.S. Abdou, M.A. Gizawy, E.A. Allam, M.E. Mahmoud, Radiat. Phys. Chem. 208 (2023) 110838. https://doi.org/10.1016/j.radphyschem.2023.110838

F. Du, J. Lou, R. Jiang, Z. Fang, X. Zhao, Y. Niu, S. Zou, M. Zhang, A. Gong, C. Wu, Int. J. Nanomed. 12 (2017) 5973–5992. https://doi.org/10.2147/IJN.S130455

A. Ghazanfari, S. Marasini, H. Yue, S.L. Ho, X. Miao, M.Y. Ahmad, J.A. Park, K.H. Jung, S. Liu, Y.J. Jang, K.S. Chae, Y. Chang, G.H. Lee, Int. J. Nanosci. Nanotechnol. 20 (2020) 4638. https://doi.org/10.1166/jnn.2020.17817

D. Zhao, A. Baek, T. Tegafaw, Y. Liu, S. Liu, H. Yue, E. Mulugeta, J. Yang, J.A. Park, H. Lee, D.W. Hwang, S. Kim, J. Kim, Y. Chang, G.H. Lee, ACS Appl. Nano Mater. 8 (2025) 13663-13675. https://doi.org/10.1021/acsanm.5c01443

A. Parbin, Rafiuddin, Mater. Adv. 3 (2022) 3316-3325. https://doi.org/10.1039/D1MA01254A

T. Placido, L. Tognaccini, B.D. Howes, A. Montrone, V. Laquintana, R. Comparelli, M.L. Curri, G. Smulevich, A. Agostiano, ACS Omega 3 (2018) 4959−4967. https://doi.org/10.1021/acsomega.8b00719.

D. Li, S. Wen, W. Sun, J. Zhang, D. Jin, C. Peng, M. Shen and X. Shi, ACS Appl. Bio Mater. 1(2) (2018) 221–225. https://doi.org/10.1021/acsabm.8b00265.

P. Lei, R. An, P. Zhang, S. Yao, S. Song, L. Dong, X. Xu, K. Du, J. Feng and H. Zhang, Adv. Funct. Mater. 27 (2017) 1702018. https://doi.org/10.1002/adfm.201702018

N. Yu, Z. Wang, J. Zhang, Z. Liu, B. Zhu, J. Yu, M. Zhu, C. Peng and Z. Chen, Biomaterials 161 (2018) 279-291. https://doi.org/10.1016/j.biomaterials.2018.01.047

Published

28-11-2025

Issue

Section

Full Articles

How to Cite

Facile synthesis of ultrasmall Bi2O3 nanoparticles for computed tomography imaging. (2025). Vietnam Journal of Catalysis and Adsorption, 14(4), 51-56. https://doi.org/10.62239/jca.2025.062

Share

Funding data

Most read articles by the same author(s)