An insight into characteristics of nonconventional hydrogen bonds in the complexes of haloforms with carbon monoxide
DOI:
https://doi.org/10.62239/jca.2025.023Keywords:
nonconventional hydrogen bond, blue shift, intermolecular distance, SAPT2+Abstract
The interaction between X3CH (X=F, Cl, Br) and CO were investigated through ab initio methods. The stability of complexes and their nonconventional C-H···O hydrogen bond decreases as the C-H polarity in haloform declines in the order Br3CH > Cl3CH > F3CH. The C-H blue shift of C-H···O hydrogen bonds increases from F3CH···OC to Br3CH···OC due to the decreasing occupation at antibonding σ*(C-H) orbitals when X goes from F to Br. The formation of C-H···O hydrogen bonds in X3CH···OC are found at the intermolecular C···O distance from 2.9 to 3.7 Å. The C-H blue shift decreases as the intermolecular distance between monomers increases. Remarkably, the significant contribution of dispersion component is observed along with the decreasing C-H blue shift at the equilibrium C···O distance region of 3.3-3.7 Å. The SAPT2+ analysis reveals a dominant contribution of dispersion and electrostatic components to complex stabilization, with the dispersion term playing a larger role.
Downloads
References
X. Chang, Y. Zhang, X. Weng, P. Su, W. Wu, Y. Mo, J. Phys. Chem. A, 120(17) (2016) 2749–2756. https://doi.org/10.1021/acs.jpca.6b02245
G. R. Desiraju, J. Am. Chem. Soc., 135(27) (2013) 9952–9967. https://doi.org/10.1021/ja403264c
G. A. Jeffrey, An Introduction to Hydrogen Bond, Oxford University Press, New York (1997).
X. Li, L. Liu, H. B. Schlegel, J. Am. Chem. Soc., 124(40) (2002) 9639–9647. https://doi.org/10.1021/ja020213j
K. Müller‑Dethlefs, P. Hobza, Chem. Rev., 100(1) (2000) 143–167. https://doi.org/10.1021/cr9900331
D. J. Philip, J. F. Stoddart, Angew. Chem. Int. Ed., 35(10) (1996) 1154–1196. https://doi.org/10.1002/anie.199611541
H.-J. Schneider, Angew. Chem. Int. Ed., 48(21) (2009) 3924–3977. https://doi.org/10.1002/anie.200802947
G. A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer, Berlin Heidelberg (1991).
G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, Oxford (1999).
S. Scheiner, Hydrogen Bonding: A Theoretical Perspective, Oxford University Press, New York (1997).
L. J. Karas, C. H. Wu, R. Das, J. I. C. Wu, WIREs Comput. Mol. Sci., 10(6) (2020) e1477. https://doi.org/10.1002/wcms.1477
J. J. J. Dom, B. U. W. Maes, W. A. Herrebout, B. J. Van der Veken, Chem. Phys. Lett., 469(1–3) (2009) 85–89. https://doi.org/10.1016/j.cplett.2008.12.038
Y. Liu, X. Li, C. Qian, S. Müller, K. Skrzyńska, S. Gallego‑Parra, … X. Wu, Inorg. Chem., 64(17) (2025) 7570–7579. https://doi.org/10.1021/acs.inorgchem.5c00522
I. Gadwal, Macromol., 1(1) (2020) 18–36. https://doi.org/10.3390/macromol1010003
J. I. Palacios‑Ramírez, L. F. Hernández, A. Pérez‑González, A. Galano, F. J. González, ChemElectroChem, (2025) 2500029. https://doi.org/10.1002/celc.202500029
L. Pauling, J. Am. Chem. Soc., 53(5) (1931) 1367–1400. https://doi.org/10.1021/ja01355a027
G. T. Trudeau, J.-M. Dumas, P. Dupuis, M. Guerin, C. Sandorfy, Van der Waals Syst., 93(??) (1980) 91–123. https://doi.org/10.1007/3-540-10058-X_9
K. Hermansson, J. Phys. Chem. A, 106(18) (2002) 4695–4702. https://doi.org/10.1021/jp0143948
E. Boldeskul, I. F. Tsymbal, Z. Latajka, A. J. Barnes, J. Mol. Struct., 436–437 (1997) 167–171. https://doi.org/10.1016/S0022-2860(97)00137-3
P. Hobza, V. Špirko, Z. Havlas, K. Buchhold, B. Reimann, H. D. Barth, B. Brutschy, Chem. Phys. Lett., 299(2–4) (1999) 180–186. https://doi.org/10.1016/S0009-2614(98)01264-0
G. R. Desiraju, Acc. Chem. Res., 24(8) (1991) 290–296. https://doi.org/10.1021/ar00010a002
N. T. Trung, T. T. Hue, M. T. Nguyen, Phys. Chem. Chem. Phys., 11(5) (2009) 926–933. https://doi.org/10.1039/B816112G
R. Gopi, N. Ramanathan, K. Sundararajan, Chem. Phys., 476 (2016) 36–45. https://doi.org/10.1016/j.chemphys.2016.07.016
W. A. Herrebout, S. M. Melikova, S. N. Delanoye, K. S. Rutkowski, D. N. Shchepkin, B. J. van der Veken, J. Phys. Chem. A, 109(14) (2005) 3038–3044. https://doi.org/10.1021/jp0448696
A. Mukhopadhyay, M. Mukherjee, P. Pandey, A. K. Samanta, B. Bandyopadhyay, T. Chakraborty, J. Phys. Chem. A, 113(11) (2009) 3078–3087. https://doi.org/10.1021/jp900473w
Behera, P. K. Das, J. Phys. Chem. A, 123(8) (2019) 1830–1839. https://doi.org/10.1021/acs.jpca.8b12200
R. Szostak, Chem. Phys. Lett., 516 (2011) 166–170. https://doi.org/10.1016/j.cplett.2011.09.082
T. T. N. Trang, D. T. Hien, T. N. Trung, P. N. Hung, K. P. Duy, T. T. Hue, Vietnam J. Chem., 48(4C) (2010) 329–334.
N. T. Thi Hong Man, P. Le Nhan, V. Vo, D. T. Tuan Quang, N. T. Tien Trung, Int. J. Quantum Chem., 117(5) (2016) e25338. https://doi.org/10.1002/qua.25338
N. T. Tri, N. T. H. Man, N. Le Tuan, N. T. T. Trang, D. T. Quang, N. T. Trung, Theor. Chem. Acc., 136(1) (2016) 10. https://doi.org/10.1007/s00214-016-2032-4
L. T. T. Quyen, N. T. Trung, RSC Adv., 14(70) (2024) 40018–40030. https://doi.org/10.1039/D4RA07498J
N. T. Trung, T. T. Huế, N. M. Thọ, Vietnam J. Chem., 45(4) (2007) 685–685. https://doi.org/10.15625/4814
S. Scheiner, T. Kar, J. Phys. Chem. A, 106(8) (2002) 1784–1789. https://doi.org/10.1021/jp013702z
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT (2009).
S. F. Boys, F. Bernardi, Mol. Phys., 19(6) (1970) 553–566. https://doi.org/10.1080/00268977000101561
R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, UK (1990).
R. F. W. Bader, Acc. Chem. Res., 8(1) (1985) 9–15. https://doi.org/10.1021/ar00109a003
E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 285(3–4) (1998) 170–173. https://doi.org/10.1016/S0009-2614(98)00036-0
F. Weinhold, E. D. Glendening, NBO 5.0 program manual, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI (2001).
J. Misquitta, R. Podeszwa, B. Jeziorski, K. Szalewicz, J. Chem. Phys., 123(21) (2005) 214103. https://doi.org/10.1063/1.2135288
I.Alkorta, I. Rozas, J. Elguero, Chem. Soc. Rev., 27(2) (1998) 163–170. https://doi.org/10.1039/A827163Z
W. Zierkiewicz, P. Jurečka, P. Hobza, ChemPhysChem, 6(4) (2005) 609–617. https://doi.org/10.1002/cphc.200400243
F. Vilela, P. R. Barreto, R. Gargano, C. R. Cunha, Chem. Phys. Lett., 427(1–3) (2006) 29–34. https://doi.org/10.1016/j.cplett.2006.06.040
V. Alabugin, M. Manoharan, S. Peabody, F. Weinhold, J. Am. Chem. Soc., 125(19) (2003) 5973–5987. https://doi.org/10.1021/ja034656e
J. Joseph, E. D. Jemmis, J. Am. Chem. Soc., 129(15) (2007) 4620–4632. https://doi.org/10.1021/ja067545z
Y. Mao, M. Head‑Gordon, J. Phys. Chem. Lett., 10(14) (2019) 3899–3905. https://doi.org/10.1021/acs.jpclett.9b01203
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 104.06-2023.49