Fabrication of platinum coating on titanium transport layer for Proton exchange membrane water electrolyzer (PEMWE)
DOI:
https://doi.org/10.62239/jca.2025.012Keywords:
Proton exchange membrane water electrolysis, PEMWE, titanium transport layer, Platinum coating, DC PlatingAbstract
Proton exchange membrane water electrolysis (PEMWE) combined with renewable energy sources such as wind, solar, geothermal provides a sustainable solution for green hydrogen production. In structure of a PEMWE, the porous transport layers (PTL) is a key component of a PEMWE. In order to meet the primary requirement of a PEM water electrolyzer, PTL should be corrosion-stable, have good electrical conductivity, and be mechanically stable for operation at differential pressures. Material porous titanium is the most typically used to construct PTL of PEMWE. However, titanium is also oxidized under the harsh conditions of PEMWE. Forming a passive layer of titanium oxide on the surface of titanium greatly reduces the conductivity of titanium. To limit these disadvantages, in this study, a thin layer of platinum was deposited onto the porous transport layers using DC plating technique. The conditions of DC plating were investigated, experimented and evaluated, from which the current density of 3 mA/cm2 for the platinum coating has the best electrical conductivity and corrosion resistance, which contributes to reducing the precious metal content in PEMWE.
Downloads
References
Muradov NZ, Veziroǧlu TN, Int J Hydrogen Energy.33(23) (2008) 6804- 6839. https://doi.org/10.1016/j.ijhydene.2008.08.054.
M. Carmo, et al., J. Hydrog, Energy 38(12) (2013) 4901–4934. https://doi.org/10.1016/j.ijhydene.2013.01.151
N. Armaroli and V. Balzani, Angew. Chem., 46(1) (2007) 52–66. https://doi.org/10.1002/anie.200602373
S. Chu and A. Majumdar, Nature, 488(7411) (2012) 294– 303. https://doi.org/10.1038/nature11475.
M.T. Balta, O. Kizilkan and F. Yılmaz, Int. J. Hydrogen Energ., 41(19), (2016) 8032–8041. https://doi.org/10.1016/j.ijhydene.2015.12.211
A.G. Dutton, J.A.M. Bleijs, H. Dienhart, M. Falchetta, W. Hug, D. Prischich, A.J. Ruddell, Int. J. Hydrogen Energ., 25(8) (2000) 705–722. https://doi.org/10.1016/S0360-3199(99)00098-1.
F.F. Abdi, L. Han, A.H. Smets, M. Zeman, B. Dam and R. van de Krol, Nat. Comm., 4(2195) (2013) 1–7. https://doi.org/10.1038/ncomms3195
F. F. Barbir, Solar Energ., 78(5), (2005) 661– 669. https://doi.org/10.1016/j.solener.2004.09.003
O. Panchenko, E. Borgardt, W. Zwaygardt, F.J. Hackemuller, M. Bram, N. Kardjilov, T. Arlt, I. Manke, M. Muller, D. Stolten, and W. Lehnert, Journal of Power Sources, 390 (2018) 108-115. https://doi.org/10.1016/j.jpowsour.2018.04.044
F.J. Hackemüller, E. Borgardt, O. Panchenko, M. Müller, and M. Bram, Advanced Engineering Materials, (2019) 1801201. https://doi.org/10.1002/adem.201970016
K. Ayers, N. Danilovic, R. Ouimet, M. Carmo, B. Pivovar, M. Bornstein, Annual Review of Chemical and Biomolecular Engineering, 10 (2019) 219-239. https://doi.org/10.1146/annurev-chembioeng-060718-030241
C. Liu, M. Carmo, G. Bender, A. Everwand, T. Lickert, J.L. Young, T. Smolinka, D. Stolten, and W. Lehnert, Electrochemistry Communications, 97 (2018) 96-99. https://doi.org/10.1016/j.elecom.2018.10.021
D.M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in medicine: material science, surface science, engineering, biological responses and medical applications. 2012. https://doi.org/10.1007/978-3-642-56486-4
C. Rakousky, U. Reimer, K. Wippermann, M. Carmo, W. Lueke, and D. Stolten, Journal of Power Sources, 326 (2016) 120-128 https://doi.org/10.1016/j.jpowsour.2016.06.082
Aldo Gago, Asif Ansar, Bilge Saruhan March, Journal of Power Sources 307 (2016) 815-825. https://doi.org/10.1016/j.jpowsour.2015.12.071
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers TĐHYD0.01/22-24