Enhancing Epoxy Adhesives with CNTs/Gr Hybrid for Advanced Spacecraft Applications
DOI:
https://doi.org/10.62239/jca.2025.011Keywords:
Graphene Nanoplatelets, CNTs, Functionalization, Young’s modulus, Flexural modulusAbstract
The growing demand for advanced materials in small satellite applications, particularly Carbon Fiber Reinforced Polymers (CFRP), underscores the need for innovations in composite components. As epoxy resin forms a key matrix in CFRP, enhancing its properties is crucial for meeting the rigorous demands of space technology. A promising approach involves using functionalized Carbon Nanotubes (CNTs-OH) and Graphene (Gr-COOH) as hybrid fillers. Functional groups improve dispersion, interfacial bonding, and minimize agglomeration within the epoxy matrix, overcoming traditional limitations. Remarkably, these hybrids offer mechanical enhancements comparable to methods like Chemical Vapor Deposition (CVD), while simplifying processing and enabling scalability. Their compatibility with epoxy ensures consistent performance and manufacturability. These functionalized systems represent a significant step toward lightweight, durable, and high-strength materials suitable for extreme environments, aligning with the broader goal of developing advanced CFRP for next-generation small satellites.
Downloads
References
R. R. Krishnamoorthy, D. Marius, Appl. Catal. A 121 (2025) 159–206.https://doi.org/10.1016/B978-0-443-221187.00007-5
H. Djojodihardjo, Acta Astronautica (2024). https://doi.org/10.1016/j.actaastro.2024.05.034
J. Yang, Z. Zhu, S. Han, Y. Gu, Z. Zhu, H. Zhang, J. Alloys Compd. 176707 (2024). https://doi.org/10.1016/j.jallcom.2024.176707
I. N. Wani, K. Aggarwal, S. Bishnoi, P. Shukla, D. Harursampath, A. Garg, J. Mater. Res. Technol. 138 (2024). DOI:10.20944/preprints202402.0382.v1.
J. C. Ince, M. Peerzada, L. D. Mathews, A. R. Pai, A. Al-Qatatsheh, S. Abbasi, N. V. Salim, Adv. Compos. Hybrid Mater. 6(4) (2023) 130. https://doi.org/10.1007/s42114-023-00678-5
R. Reda, Y. Ahmed, I. Magdy, H. Nabil, M. Khamis, A. Refaey, G. Abed, Trans. Aerosp. Res. (2023). https://doi.org/10.2478/tar-2023-0016
D. V. Breslavs’kyi, S. O. Pashchenko, O. A. Tatarinova, Strength Mater. 51 (2019) 231–239. https://doi.org/10.1007/s11223-019-00069-6
J. Shen, H. M. Liu, J. Wang, Math. Biosci. Eng. 19 (2022) 2120–2146. DOI: 10.3934/mbe.2022099
A. S. Tsybenko, B. M. Rassamakin, A. A. Rybalka, Strength Mater. 49 (2017) 381–387. https://doi.org/10.1007/s11223-017-9878-0
S. Nasir, M. Z. Hussein, Z. Zainal, N. A. Yusof, Mater. 11(2) (2018) 295. https://doi.org/10.3390/ma11020295
V. K. Thakur, M. K. Thakur, Chem. Funct. Carbon Nanomater. (2018) 5–13. Warentown (NJ: CRC Press. https://doi.org/10.3390/ma11020295
M. Chakraborty, M. S. J. Hashmi, Adv. Mater. Process. Technol. 4(4) (2018) 573–602. https://doi.org/10.1080/2374068X.2018.1484998
G. Zhao, X. Li, M. Huang, Z. Zhen, Y. Zhong, Q. Chen, H. Zhu, Chem. Soc. Rev. 46(15) (2017) 4417–4449. https://doi.org/10.1080/2374068X.2018.1484998
D. G. Papageorgiou, I. A. Kinloch, R. J. Young, Prog. Mater. Sci. 90 (2017) 75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004
Ö. Güler, N. Bağcı, J. Mater. Res. Technol. 9(3) (2020) 6808–6833. https://doi.org/10.1016/j.jmrt.2020.01.077
K. Chu, X. H. Wang, Y. B. Li, D. J. Huang, Z. R. Geng, X. L. Zhao, H. Zhang, Mater. Des. 140 (2018) 85–94. https://doi.org/10.1016/j.matdes.2017.11.048
V. Khanna, V. Kumar, S. A. Bansal, Mater. Res. Bull. 138 (2021) 111224. https://doi.org/10.1016/j.materresbull.2021.111224
K. Chu, F. Wang, X. H. Wang, D. J. Huang, Mater. Sci. Eng. A 713 (2018) 269–277. https://doi.org/10.1016/j.msea.2017.12.080
A. Ali, S. S. R. Koloor, A. H. Alshehri, A. Arockiarajan, J. Mater. Res. Technol. 24 (2023) 6495–6521. https://doi.org/10.1016/j.jmrt.2023.04.072
Y. Lin, Q. Shi, Y. Hao, Z. Song, Z. Zhou, Y. Fu, J. Wu, Int. J. Mech. Sci. 257 (2023) 108532. https://doi.org/10.1016/j.ijmecsci.2023.108532
M. Shifa, F. Tariq, F. Khan, Z. S. Toor, R. A. Baloch, Mater. Res. Express 6(12) (2020) 125629. https://doi.org/10.1088/2053-1591/ab6928
T. S. Jang, J. Rhee, J. K. Seo, Acta Astronaut. 117 (2015) 497–509. https://doi.org/10.1016/j.actaastro.2015.09.014
T. S. Jang, H. K. Cho, H. S. Seo, W. S. Kim, J. H. Rhee, J. Korean Soc. Aeronaut. Space Sci. 38(12) (2010) 1209–1216. https://doi.org/10.5139/JKSAS.2010.38.12.1209
W. Li, A. Dichiara, J. Bai, Compos. Sci. Technol. 74 (2013) 221–227. https://doi.org/10.1016/j.compscitech.2012.11.015
L. Yue, G. Pircheraghi, S. A. Monemian, I. Manas-Zloczower, Carbon 78 (2014) 268–278. https://doi.org/10.1016/j.carbon.2014.07.003
Y. Li, R. Umer, A. Isakovic, Y. A. Samad, L. Zheng, K. Liao, RSC Adv. 3(23) (2013) 8849–8856. https://doi.org/10.1039/C3RA22300K
Sarkar, L., Saha, S., Samanta, R., Sinha, A., Mandal, G., Biswas, A., Das, A., J. Inst. Eng. (India): Ser. D 105(1) (2024) 527–541. https://doi.org/10.1007/s40033-023-00465-y
T. Dutta, I. Llamas-Garro, J. S. Velázquez-González, J. Bas, R. Dubey, S. K. Mishra, IEEE Sens. J. (2024). https://doi.org/10.1109/JSEN.2024.3440499
M. Etesami, M. T. Nguyen, T. Yonezawa, A. Tuantranont, A. Somwangthanaroj, S. Kheawhom, Chem. Eng. J. 446 (2022) 137190. https://doi.org/10.1016/j.cej.2022.137190
C. L. Han, A. L. Zou, G. D. Wang, Y. Liu, N. Li, H. X. Zhang, E. Blackie, Diam. Relat. Mater. 124 (2022) 108953. https://doi.org/10.1016/j.diamond.2022.108953
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Vietnam Journal of Catalysis and Adsorption

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Share
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers VAST01.03/24-25