Supporting information

Utilization of activated carbon for the adsorption of methylene blue from waste coffee husk

Nguyen Thi Hong Phuong^{1,*}, Nguyen Thi Thu Huong², Nguyen Thu Ly³, Nguyen Thi Thu³, Nguyen Thi Thu Hang³, Hoang Thu Huong⁴, Nguyen Tien Dung⁴

Intraparticle diffusion

Models Equation

Pseudo-first order $q_t = q_e(1 - e^{-(k_1 \times t)})$ Pseudo-second order $q_t = \frac{k_2 q_e^2 t}{1 + k_2 q_e t}$ Elovich $q_t = \frac{1}{\beta} ln(\alpha \beta t + 1)$ Bangham $q_t = k_b t^{\alpha_b}$

Table S1: Adsorption kinetic models.

In which, q_t (mg g^{-1}) is the amount of adsorbent over time t (min); k_1 (min⁻¹) is the constant rate of Pseudo-first order; k_b is the constant rate of Bangham; K_1 (mg g^{-1} min⁻¹) is the constant rate; α (mg g^{-1} min⁻¹) is the initial adsorption rate; β (g mg⁻¹) is the desorption constant; α_b (< 1) represents the adsorption intensity; C is a constant related to the thickness of the liquid film surrounding the adsorbent.

 $q_t = K_I t^{0,5} + C$

Table S2: Adsorption isotherm models

Models	Equation
Freundlich	$q_e = K_F C_e^{1/n}$
Temkin	$q_e = b_T \ln A C_e$
Redlich-Petterson	$q_e = \frac{K_{RP} C_e}{1 + \alpha C_e^{\beta}}$
Sips	$q_e = \frac{Q_m (K_S C_e)^{1/n}}{1 + (K_S C_e)^{1/n}}$

In which, K_F ((mg.g⁻¹)(L.mg⁻¹)^{1/n}) is the Freundlich isotherm constant, C_e (mg.L⁻¹) is the dye concentration at equilibrium, n is a parameter related to the surface heterogeneity; b_T is related to the thermal state of adsorption, A (L.mg⁻¹) is the Temkin constant; K_{RP} (L.g⁻¹) and α (mg⁻¹) are the constants of Redlich-Petterson, β is an exponent between 0 and 1 that represents the heterogeneity of the adsorbent; Q_m (mg.g⁻¹) is the maximum adsorption

¹ School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Vietnam

² Academy of Military Science and Technology, 17 Hoang Sam, Hanoi, Vietnam

³ Joint Vietnam - Russia Tropical Science and Technology Research Center, 63 Nguyen Van Huyen, Hanoi, Vietnam

⁴ Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Hanoi, Vietnam

^{*} Email: phuong.nguyenthihong@hust.edu.vn

capacity of the Sips isotherm, K_s (L.mg⁻¹) is the Sips constant and n is the index of heterogeneity; for a homogeneous material n=1.

Figure S1: pH_{pzc} of AC (a), effect of pH on MB removal by AC after t = 60 min (b), and effect of contact time on MB adsorption capacity onto AC (c) ($C_0 = 10 \text{ mg L}^{-1}$, m = 0.05 g, V = 50 mL, T = 298 K).

Figure S2: The reusability of AC as adsorbent for the removal of MB dye.