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 Alzheimer's disease is currently increasing in risk with age. This study 

investigates the inhibitory activity of Quercetin (QC) compounds in slowing the 

progression of Alzheimer's disease (AD). The research employs network 

pharmacology and molecular docking methods. Furthermore, it conducts 

screening of important herbal medicines from traditional Chinese medicine 

and integrates them with the GeneCards database and AD-related targets. 

Overlapping herbal medicines and targets have been identified as significant 

candidates. A total of 10 target genes have been selected for QC in AD 

treatment. The JUN gene shows the highest binding affinity. Gene Ontology 

(GO) analysis was performed to identify AD-related biological processes and 

neural cell components. Additionally, 10 candidate targets with homologous 

genes participating in signaling pathways have been identified. QC binding 

molecules exhibit high binding affinity for 10 target proteins, elucidating 

candidate targets for QC in alleviating AD. The study explores protein-protein 

interactions and associated signaling pathways, confirming QC's inhibition of 

AD. This provides a basis for AD therapy monitoring. 
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Introduction 

 

Recent years have seen a surge in interest in 

developing new active drugs, particularly small-

molecular-weight pharmaceuticals that interact with 

biological targets. This approach offers a streamlined 

drug design but requires extensive research and 

expensive resources [1]. Only a small fraction of novel 

compounds receive regulatory approval. The process 

involves numerous preclinical and clinical experiments, 

evaluating the safety and effectiveness of new 

treatments [2]. Preclinical testing involves discovering 

potential drugs for improved models. Screening 

strategies involve identifying chemicals against 

biochemical or cellular targets, selecting suitable 

compounds, and examining physicochemical and 

pharmacological parameters. These compounds are 

assessed for lead compound potential, but screening 

data may have limitations [3]. Positive results can lead 

to further tests, while negative results may become less 

important. Computational methods can help overcome 

these limitations and improve the screening process. 

The fingerprinting approach is a highly effective tool 

for detecting new drugs and retrieving chemicals 

bound to protein targets [4].  
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The risk of developing AD in older people is increasing. 

This is an age-dependent neuropathy, due to a 

neurodegenerative disorder that currently has no cure. 

This is also a phenomenon of the gradual decline in 

the activity of the nerve cells. The nerve cells die 

gradually leading to cognitive impairment [5]. 

Alzheimer's disease, initially identified by a German 

psychiatrist and neurologist, is a type of dementia that 

has been acknowledged as the primary clinical 

manifestation in individuals, resulting in alterations in 

daily routines and a dependence on their caregivers 

[6]. The common symptoms of dementia are caused 

by the progression of AD in the elderly. Nowadays, AD 

is prevalent in underdeveloped countries, accounting 

for almost 50% of people with AD worldwide. There 

are many different paths to slow down the risk of  AD 

progression and may also relieve symptoms. Alzheimer 

disease is caused by a peptide containing 36-43 amino 

acids due to the distribution of amyloid-beta (Aβ). This 

may be the main cause of neurodegeneration. 

Amyloid-beta is created by the chain division of the 

amynoid precursor protein. (APP) [7]. Caspases-3 is 

essential for biological functions like apoptosis and 

pyroptosis, producing cytokines and reducing nerve 

death. It plays a central role in cell differentiation, 

limiting the rate of APP breakdown, leading to toxic 

neuronoid proteins and neurodegeneration [8]. 

Forecast strong Caspase-3 inhibitors as potential 

treatment options for Alzheimer disease management. 

Caspase-3 is present in humans and is essential for the 

development of nerve cells. Therefore, inhibiting 

Caspase-3 represents a beneficial target to slow down 

or prevent AD. Over time, various QSAR models have 

been constructed to develop Caspase-3 inhibitors [9]. 

Heart failure and Alzheimer's disease are prevalent in 

older adults, with heart failure patients at risk of 

developing AD. Risk factors include age, vitamin D 

deficiency, kidney disease, and diabetes. Quercetin can 

detect potential AD prevention [10,11].  

Numerous studies have explored the link between 

cardiovascular disease and Alzheimer's disease, with 

clinical trials and animal studies proving the efficacy of 

incorporating Jin Hong Tang into the diet for treating 

Alzheimer's disease. However, the scientific paper only 

provides preliminary reports. This study aims to study 

the molecular mechanisms behind the treatment of AD 

using network pharmacology, gene analysis, and 

molecule connectivity. 

Related ingredients Related herbs Targets 

 
(a) 

 
Ginkgo Semen 

(Family:Ginkgoaceae) 

 
Herba Patriniae 

(Family: Valerianaceae) 

 
Coptidis Rhizoma 

(Family:Ranunculaceae) 

(c) 

 
(d) 

 
quercetin (QC)  

(b) 

12 candidate genes  

1. CTSB 

2. TNF 

3. CD36 

4. H19 

5. EGF 

6. APP 

7. MMP2 

8. JUN 

9. FGF2 

10. LEP 

11. CRAT 

12. NFKBIA 

Fig 1: (a) Venn diagram of related ingredients to AD; (b) Quercetin in an intersection of three herbs; (c) Three 

related herbs: Ginkgo Semen, Herba Patriniae, Coptidis Rhizoma; (d) The related targets: Cathepsin K, Collagen 

alpha-1, Pyruvate kinase and Estrogen receptor, and 12 candidate genes in an intersection. 
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Materials and Methods 

The Targets Associated with QC and AD 

Figure 1a describes the chemical structure of quercetin 

(QC) compounds obtained from PubChem [12]. We 

searched the genetic databases (NCBI), GeneCards, 

and DisGeNet using the search terms "Alzheimer" and 

"Homo sapiens" to identify the genes associated with 

AD [13]. GeneCards are used to find the QC target 

protein. As shown in Figure 1b, we then use the Venny 

chart to identify potential QC targets for AD reduction. 

Cathepsin K: 2519 genes, Collagen alpha-1: 138 genes; 

Pyruvate kinase: 99 genes. Estrogen receptor: 10359 

genes. To analyze the protein interaction network of 

candidate targets, the species was set to Homo sapiens 

and the confidence score was set to greater than 0.7. 

Enrichment Analysis of the Candidate Targets 

The aforementioned candidate targets underwent 

gene ontology (GO) functional enrichment analysis and 

concomitant genomic and metabolic pathway (KEGG) 

enrichment analysis [14]. The species preference was 

set to Homo sapiens, and cellular components, 

molecular functions, biological processes, and signaling 

pathways associated with the targets were analyzed. 

The enrichment diagrams were created using the 

bioinformatics website. 

Docking calculation   

Autodock can be used to evaluate the binding 

efficiency between QC and candidate target proteins. 

The RCSB Protein Data Bank (http://www.pdb.org) was 

used to determine the X-ray crystal structures of the 

predicted targets. ChemDraw also allows for the 

reconstruction of QC 3D structure. Then, edit 

candidate target proteins located at the intersection of 

QC and AD using MOE Autodock [15]. The study 

applied structural modifications to candidate proteins, 

evaluated the connection between QC and targets 

using MOE Autodock, and used RMSD docking models 

for accurate results. Protein-ligand interactions were 

visualized using MOE. 

 

Results and discussion  

Identify the Candidate Targets 

As illustrated in Fig. 1b, after removing redundant 

information, we obtained AD-related therapeutic 

targets including cathepsin K: 2519 genes, collagen 

alpha-1: 138 genes, pyruvate kinase: 99 genes, 

estrogen receptor: 10359 genes, of which 12 genes 

were overlapped between 4 targets. Human (Homo 

sapiens) candidate genes are located within the 

junction region including CTSB, TNF, CD36, H19, EGF, 

APP, MMP2, JUN, FGF2, LEP, CRAT, and NFKBIA 

intersection. We selected one common candidate JUN 

gene with largest interacting partners [13]. These genes 

are potential molecular targets that mediate the anti-

AD effects of QC. 

Proteins-Protein Interaction   

A protein-protein interaction network was made using 

a candidate JUN gene of four candidate protein targets 

cathepsin K, collagen alpha-1, pyruvate kinase, and 

estrogen receptor. The candidate genes CTSB, TNF, 

CD36, H19, EGF, APP, MMP2, JUN, FGF2, LEP, CRAT, 

and NFKBIA [13]. The 12 target genes are described in 

detail in Fig. 1. The interaction of the 12 candidate 

protein genes CTSB, TNF, CD36, H19, EGF, APP, MMP2, 

JUN, FGF2, LEP, CRAT, and NFKBIA with other protein 

genes is depicted in Figure 2a. There are a number of 

target protein loci with the greatest number of protein 

interactions. We discovered that the JUN protein gene 

with the most interactions may be the best candidate 

for Alzheimer therapy. Figures 2b and 2c suggest a 

JUN target intersecting with four target groups as a 

potential anti-AD effect of QC in the protein-protein 

interaction network. The interactions between JUN 

protein subunits have 26 nodes, 166 edges, and an 

average node degree of 12.8, with nodes with the 

highest degree of connectivity to other gene symbols 

representing the most promising drug targets. These 

targets are also associated with other proteins at 

various confidence probabilities (p). Figure 2d shows 

the distribution of similarity proteins, with 12 candidate 

genes being selected as potential proteins. Gene JUN is 

crucial for the covalent propagation of 

immunoglobulins and immune complexes, enhancing 

the solubility of immune aggregates, and may be 

responsible for efficient binding to form amide bonds 

with immune aggregates. 

Enrichment Analysis of the Candidate Targets  

GO analysis   

GO analysis to identify biological processes and 

pathways with a significance level of 0.05. The 

histogram columns represent the number of enriched 

genes, while the lesser P-values indicate a higher level 

of confidence in the enrichment results. They are 

functionally molecularly enhanced in gene ontology 

(GO) by binding to the transcriptional core regulator, 

DNA-binding transcription factors, RNA polymerase II, 

etc., and upregulatory small molecule metabolism. The 
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GO analysis graph in Fig. 3 clarifies the relationship 

between each target, cellular component, biological 

process, molecular function, and biological pathway in 

ascending P-value order. The study focuses on the 

cellular components, biological processes, molecular 

functions, and biological pathways of 12 genes, 

including CTSB, TNF, CD36, H19, EGF, APP, MMP2, 

JUN, FGF2, LEP, CRAT, and NFKBIA [13,14]. 
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Fig 2: Analysis of network pharmacology presents in a) importance of 12 candidate targets in protein-protein 

interaction (PPI) network; b) and c) protein-protein interaction network: 26 nodes (proteins) and 166 edges 

(protein interactions); d) the interacting partners. 
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c) 

Fig 3: GO analysis presents in a) cellular component, b) molecular function and c) biological pathway of the 

11 target proteins at the p confidence level. 

The study reveals that JUN's high binding center is 

located at the intersection of four targets, with the anti-

AD effect being the primary binding center. Three key 

procedures are positive transcription regulation from 

the RNA polymerase II promoter, DNA template 

regulation, and negative transcription regulation. 

Molecular function refers to responses to factors like 

polysaccharide, glucocorticoids, antibiotics, hydrogen 

peroxide, blood pressure regulation, and aging cells 

linked to Alzheimer's disease. Six cellular components, 

including Platelet alpha granule lumen, cell surface, 

dendritic shaft, extracellular, I-kappaB/NF-kappaB 

complex, and extracellular space, play a role in the 

anti-AD effect of QC. The GO analysis reveals that 

positive transcriptional regulation from the RNA 

polymerase II promoter has the most biological targets, 

while protein binding has the most molecular function 

targets, with two transcriptional variants. These protein 

genes can be expressed as a single chain precursor. 

KEGG pathway analysis   

The study used a KEGG pathway enrichment analysis to 

identify potential pathways involved in the anti-AD 

effects of QC. It found that 11 interferon targets are 

primarily enriched in signaling pathways, suggesting 

interaction with multiple sequenced pathways [14]. The 

KEGG analysis pathway diagram in Fig. 4 shows the 

significant role of these pathways in Alzheimer 

treatment, with the graph indicating the relationship 

between target enrichment and leading pathways. 

[13,14]. The study reveals that the highlighted genes in 

fluid shear stress, atherosclerosis, and hypoxia-

inducible pathways are part of the PPI network of 

common targets, suggesting they may mediate QC's 

anti-AD effects. The JUN gene also interacts with these 

pathways, as depicted in Fig 4.  

Alzheimer's disease is a severe condition characterized 

by gene inactivation, disrupting signal transduction 

pathways under stress and normal conditions. 

Symptoms include cognitive impairment, tremors, 

speech difficulties, delayed reflexes, coordination 
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deficits, and nerve tremors. Early neurological disorders 

are also observed in AD patients. The study also 

highlights the involvement of ATM mRNA in various 

cellular processes beyond DNA repair [13]. 

Furthermore, The JUN gene plays a crucial role in 

nerve cell receptor regulation, which triggers cytokine 

production, cell survival, development, and 

differentiation, as in Fig 4. CD28, CD45, and CD4 

regulate TCR signals, enhancing IL-2 production and 

preventing cell dysfunction. TCR activation also 

prompts bone cell rearrangement via Rac and PAK [14]. 

Negative regulation of TCR nerve signaling is essential 

to prevent excessive response activation, with 

substances like SIT and CTLA4 acting as negative 

regulatory substances. The body uses natural 

mechanisms to regulate T-cell nerve pathways post-

activation to prevent uncontrolled reactions. 

 

Fig. 4: Biological pathways presented for JUN Gene 

Interaction 2D,3D and Score (S)/ kcal/mol  Interaction 2D, 3D and Score (S)/ kcal/mol 

Cathepsin B (PDB-1CPJ) with Gene CTSB CD36 Molecule (PDB- 5LGD) with Gene CD36 

 

  
S = -7.30 kcal/mol 

a) 

 

 

  
S = -8.30 kcal/mol 

b) 

Jun Proto-Oncogene, AP-1 Transcription Factor Subunit 

(PDB-3U85) with Gene JUN 

 
Leptin (PDB-6E2P) with Gene LEP 

 

 
S = -7.60 kcal/mol 

c) 

 

 

 
S = -8.60 kcal/mol 

d) 

Fig. 5: The docking results are illustrated for QC bonds to the most important target proteins:  

a) PDB-1CPJ complex; b) PDB- 5LGD complex; c) PDB-3U85; d) PDB-6E2P 

Docking calculation   

The study analyzed the interaction of QC protein with 

specific docking targets, including the critical JUN gene 

target in QC's anti-Alzheimer's effect. The docking 

targets included CTSB, TNF, CD36, EGF, APP, MMP2, 

JUN, FGF2, LEP, and NFKBIA genes, with ten having 

partners; H19 and CRAT lacked partners. These targets 

evaluated QC binding, with Fig.5 showing QC's 

predominant bonding via hydrogen bridges and 

hydrophobic interactions [11]. Docking data revealed 

QC mainly binds through pi-H interaction, 

hydrophobicity, and hydrogen bonding. Lower affinity 

energy indicates strong binding, with most proteins 

having binding energies below -5 kcal/mol, suggesting 

significant bindings, and genes with the lowest binding 

energy suggesting the highest binding capacity [15]. 

Overall, the docking process accurately predicted QC's 

interaction with target protein binding pockets. 

Additionally, QC's effects on Alzheimer's disease were 

confirmed. The binding outcomes of the QC-H group 

resembled those of other target protein interactions, 
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and QC therapy may vary in Alzheimer's treatment, 

with possible variations based on treatment duration.  

Using computational docking techniques for QC 

interactions with the target proteins Cathepsin B (PDB-

1CPJ) with the gene CTSB, CD36 Molecule (PDB-5LGD) 

with the gene CD36, (PDB-3U85) with the gene JUN, 

and Leptin (PDB-6E2P) with the gene LEP further 

demonstrated that these are core important genes in 

the PPI network, as seen in Fig. 2. The results of the PPI 

interaction screening using the network pharmacology 

obtained from this study align with the research on the 

mechanism of quercetin therapeutic targets for 

Alzheimer's disease, as indicated by the work of Guoxiu 

Zu et al. [16]. The binding energies (kcal/mol) between 

QC and the proteins were all less than -7.0 kcal/mol, as 

confirmed by molecular docking simulations. However, 

the JUN gene appears to be the most important, with 

multiple links between QC and the target protein. Four 

core genes were validated in the docking simulation 

(Fig. 5). The binding energies of QC with the proteins 

ranged from -8.60 kcal/mol to -7.30 kcal/mol. The 

average binding energy was -7.95 kcal/mol. Biological 

pathways presented for the JUN gene were also 

identified, as shown in Fig. 4. 

Discussion 

QC, a natural or extracted derivative, possesses anti-

inflammatory, anticancer, and antidiabetic properties. 

Late modulation of neurogenesis in Alzheimer's 

disease (AD) [11]. New extraction methods may ensure 

sustainable QC supply, opening up promising potential 

for developing AD drugs. This study explores network 

pharmacology, analyzing interactions between proteins 

and chemical components to discover standalone 

medications. Using network pharmacology techniques, 

key targets for AD treatment using QC derivatives have 

been identified. Target networks have revealed eleven 

potential candidates for QC use in AD treatment, with 

eleven proteins identified as crucial molecular targets 

for QC's anti-AD effects. Among them, the JUN protein 

gene target has been prominently selected for 

molecular docking, complemented by KEGG analysis. 

Gene Ontology analysis has highlighted QC's 

involvement in AD-related biological processes such as 

aging and nerve influence. Recent research 

emphasizes the link between AD and age-related 

increase, reinforcing the importance of targeting these 

pathways in AD treatment. Cytokines contribute to 

Alzheimer's disease (AD), causing loss of control over 

habits. Aging accelerates AD, and Quality Control (QC) 

can regulate protein targets and modulate pathological 

processes. Molecular studies show QC interacts with 

predicted protein targets related to AD, with all four 

selected proteins being targets in Alzheimer's disease 

[12,13]. Additionally, the results indicate that AD 

interaction and hydrogen bonding are the 

predominant forms of interaction, suggesting the 

molecular mechanism underlying QC in AD. Future 

research may investigate specific techniques to yield 

more precise results. 

 

Conclusion 

 

The study focuses on screening herbal materials and 

analyzing major anti-Alzheimer's disease targets using 

network pharmacology. The research findings reveal 

that QC may alleviate AD through multiple targets and 

pathways, suggesting potential for AD treatment and 

providing a mechanism of action for monitoring AD 

therapy. The study provides a comprehensive 

understanding of its therapeutic effects. This study 

serves as a reference for validation assays of QC based 

on these protein candidate targets. 
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