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 In this study, graphene oxide (GO) was prepared by the Hummers method. 

GO/CS/PVA fibers were prepared by an electrospinning method. The 

structure, morphology and size of the electrospun materials were 

characterized by X – ray diffraction (XRD) and a scanning electron microscope 

(SEM). Fourier transformation infrared (FTIR) was used to confirm the 

formation of PVA/CS/GO. Raman spectroscopy was used to analyze the 

characteristic functional groups of carbon materials in GO. GO/CS/PVA 

nanofibers were successfully synthesized with an average diameter of about 

108 nm and the bandgap energy was 3.2 eV. The nanofibers were used as a 

counter electrode for dye-sensitized solar cells. With the natural dye extracted 

from magenta leaves and the counter electrode based on GO/CS/PVA, the 

solar energy-to-electrical energy conversion efficiency was 0.65%. 
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Introduction 

 

The solar cell is produced with the purpose of replacing 

fossil fuels with renewable energy sources. The 

generation of electricity using solar energy has been 

the essence of scientific research, while the energy 

demand is increasing worldwide because of the rapid 

growth of the population [1, 2]. This challenge has to 

be answered with a low-cost issue using abundantly 

available raw materials. It is an important point that 

highlights the dye-sensitized solar cells (DSSC). 

Therefore, DSSC has emerged as one of the most 

promising alternatives to conventional silicon-based 

solar cells [3]. The DSSC technology is based on a 

nanostructured semiconductor photoanode (working 

electrode), photosensitizer, redox electrolyte, and a 

cathode (counter electrode). The efficiency of DSSC 

depends on not only the properties of the dye and 

redox types of electrolytes but also the interaction 

between a working electrode and counter electrode. 

The working electrode is based on semiconductor 

oxide with a wide band gap (TiO2, ZnO, SnO2, CeO2, 

and Nb2O5) [4-8]. TiO2 has been the most effective 

photoanode for many years. Nanocrystalline TiO2 with 

a high-surface-area-to-volume ratio is suitable for dye 

molecule absorption [8]. Many kind of  TiO2 

nanomaterials have been studied as working 

electrodes of DSSC [8]. TiO2 materials are used for 

DSSC in the form of films, nanoparticles, nanorods, and 

nanofibers [9-12]. 

The counter electrode typically includes conductive 

TCO glass coated by a layer of catalyst.  Platinum (Pt) is 

known to be an effective catalyst for DSSC [2, 13-15]. 

However, the use of Pt catalyst will make the cost of 

DSSC high. Recently, carbon-based materials, 
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conducting polymers, and polymer-carbon composites 

are potent substitutes for Pt-free counter electrodes of 

DSSC [16]. GO has been used as a catalyst for DSSC 

due to its versatile characteristics such as high surface-

area-to-volume ratio, provided extra active sites, and 

good mechanical stability [17-19]. Composites 

(supported catalysts) are widely used for counter 

electrodes [18, 19]. Thus, the decoration GO with 

polymers would be a good choice for DSSC. 

In this study, anthocyanin is extracted from the leaf of 

the magenta plant as a sensitizer for DSSC. 

Anthocyanin is the main component of several plants, 

flowers, fruits and gives efficient performances in 

photosensitization [20-22]. The mixture of chitosan (CS)  

and polyvinyl alcohol (PVA) were selected to disperse 

GO for electrospinning [23]. GO was synthesized by 

the Hummers method. The power conversion 

efficiency of DSSC was evaluated with the counter 

electrode of CS/PVA/GO nanofibers. 

 

Experimental 

 

Materials 

 

Sulfuric acid (H2SO4), acetic acid (CH3COOH), 

potassium iodide (KI), iodine (I2), titanium dioxide 

(TiO2), ethanol (C2H5OH), PVA, CS, potassium 

permanganate (KMnO4), hydrogen peroxide (H2O2) 

was purchased from Sigma. Sodium hydroxide (NaOH) 

and hydrochloric acid (HCl) were purchased from 

Merck.  Fluorine doped tin oxide (FTO) coated glass 

substrates were purchased from Pilkington with a sheet 

resistance of 15 /square. Distilled water was used for 

all of the experimental processes.  

 

Synthesized GO 

 

GO was synthesized from coconut shell charcoal by 

Hummer’s Modified method [24]. Briefly, coconut shell 

charcoal after milling was added in 4 M HCl solution 

for 3 hours with a weight ratio of 1:3 at 45 oC to 

remove impurities. Then, the sample was washed with 

NaOH until pH neutral and dried for 24 h. Next, 1 g of 

coconut shell charcoal was added to 25 mL of 

concentrated H2SO4 for 30 min at a temperature 

between 0-20 oC. Then, 3 g of KMnO4 was slowly 

added to the above mixture and continued stirring for 

25 min. The color of the solution changed to dark 

green and the temperature was still kept at 0-20 oC. 

Then, 50 mL of deionized water was added slowly to 

the solution under stirring for 1 h. Next, 100 mL of 

distilled water was added to the solution for another 15 

min and then sonicated for 30 min. Later, 15 mL of 

30% hydrogen peroxide was slowly added to the 

solution and stirred for 15 min to remove excess 

KMnO4 and then sonicated for 30 min. The mixture 

was then washed to neutral pH with a 5 M NaOH 

solution to obtain the final product (GO). Finally, GO 

was dried in an oven at 60 oC for several days. 

 

Synthesized CS/PVA/ GO via an electrospinning 

method 

 

CS solutions with different concentrations were 

dissolved in 3 wt% acetic acid at room temperature for 

3 h. Next, the  PVA with various contents was added in 

CS solution at 80 oC under stirring for 5 hours to obtain 

the mixture. Then, GO was added to the mixture with 

11% wt of GO under stirring for 1 hour to obtain the 

solution for electrospinning. The electrospinning 

experiments were carried out at the suitable conditions 

including: 14% of PVA concentration, 8/2 (wt/wt) of 

PVA/CS ratio, 0.8 mL.h-1 of flow rate, 15 cm of tip-to-

collector distance, 15 kV of applied voltage, and 11% wt 

of GO content. 

 

Materials characterization 

 

X-ray diffraction (D8 Advanced Brucker, Germany) was 

used to determine the characteristic peaks, crystallinity 

and grain size of GO. The morphologies of 

GO/CS/PVA nanofibers were characterized by a 

scanning electron microscope (SEM, JSM-6390LV, 

JEOL, Japan). Fourier transform infrared (FTIR) 

spectroscopy (Nicolet 6700, Thermo Scientific) and 

Raman spectroscopy (XploRA ONE) were used to 

analyze the chemical structure and determine the 

functional groups present in the molecule, groups of 

carbon materials. UV/VIS spectrophotometer (UV-Vis, 

Pharo 300, Merck, Germany), was used to evaluate the 

bandgap energy. 

 

Fabrication of DSSC 

 

5 g of magenta leaves were dried to saturated 

moisture content (about 3.3 wt%). Then, the dried 

magenta leaves were soaked in 30 mL of 50 wt% 

ethanol  and 1 wt% HCl at 40 oC for 1 h. FTO glass 

substrates with an effective area of 1 cm × 1 cm were 

washed with ethanol and cleaned using an 

ultrasonicator. For the preparation of photoanode, a 

FTO glass substrate was coated with TiO2 paste by the 

doctor blade technique and sintered at 400 °C for 30 
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min. The FTO glass substrate with the TiO2 layer was 

immersed in the extracted dye. For the counter 

electrode, the solution for electrospinning was 

prepared at proper conditions, including 14% of PVA 

concentration, 8/2 (wt/wt) of PVA/CS ratio, and 11% wt 

of GO content. FTO glass substrate that was cleaned 

previously was used as a collector for electrospinning. 

After electrospinning for 10 min, the PVA/CS/GO 

nanofibers were deposited on the FTO glass substrate. 

The counter electrode was treated by a thermal 

method at 200 °C for 15 min to remove the residue 

solvents. The electrolyte was prepared by mixing 0.83 g 

of potassium iodide and 0.127 g of iodine with 10 mL of 

ethylene glycol. The solution was stirred for 30 min at 

room temperature. DSSC was fabricated by 

sandwiching the working electrode and counter 

cathode. A micro syringe was used to inject the 

electrolyte into the middle of  the  electrodes. The J-V 

curve was obtained from the photoelectric 

measurement of the devices with an active area of 1 

cm2. 

 

Results and discussion  

 

Characterization of GO 

Figure 1a shows the Raman spectrum of GO.  Two 

major peaks were observed, corresponding to D band 

(1350.9 cm-1) and G band (1585.7 cm-1), which are 

Raman characteristic  peaks of  GO. The peak of the G 

band corresponds to the sp2 hybridized carbon in the 

graphitic lattice. The peak of D is related to defects or 

other impurities in the hybridized carbon. The intensity 

ratio of D-band to G-band (ID/IG) was 0.85. The results 

indicates the similarity of the ID/IG intensity ratio 

compared with previous reports [25, 26]. The 2D band 

is a crucial parameter for determining layer totals of 

the GO. Based on the intensity of 2D-band peak at 

2758.8 cm-1, the synthesis of GO is multilayer [27, 28]. 

GO has been successfully synthesized. 

 Figure 1b shows the FTIR spectrum of GO. The 

oscillations extending from the hydroxyl groups (-OH) 

in the water molecule (-OH) were at peak 1 (3440.1 cm-

1), the carboxylic functional group for peak 2 (1706.4 

cm-1), the alcohol functional group for peak 3 (1399.9 

cm-1) and epoxy functional group absorbed at 

wavelength 1119.9 cm-1. Therefore, the FTIR 

spectroscopy results confirm the formation of different 

functional oxygen-containing groups such as hydroxyl, 

carboxyl, alcohol and epoxy in the GO structure and 
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Figure 1: (a) Raman spectrum of GO; (b) FTIR spectrum of GO; (c) XRD patterns of GO; (d) Band gap energy of GO 
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are similar to the FTIR spectroscopy for GO those 

reported by Leila [25] and Sujiono [26].  

XRD pattern of GO sample in Figure 1c shows the (002) 

peak at the 2 theta =10.65 . There are also peaks of 

impurities, but peak intensity is weak. According to 

Scherrer's  equation, the distance between the stacking 

layers is 0.9 nm, the stacking height is 3.92 nm 

corresponding to 5 layers, which correspond to GO. 

The results follow the study of Leila [25]. 

The band gap energy of GO is 3.2 eV. This result 

indicates that coconut shell charcoal was originally an 

insulating material [26]. While the insulator has a 

bandgap energy of 5 eV and, after synthesis into a GO 

material, is a semiconductor with band gap energy 

lower 5 eV. The reduction in-band energy is due to the 

graphite powder's oxidation and the sample's acoustic 

variation. When compared with other studies such as 

synthesizing GO from coconut shell charcoal by the 

Hummer method of Sujiono [26] and Ji Chen [28], we 

found that the GO synthesized in this study has a 

smaller bandgap. This shows that GO synthesized from 

coconut shell charcoal by Hummer’s Modified method 

is appropriate for the photosensitive solar cell 

applications. 

 

Characteriztion of GO/CS/PVA nanofibers 

 

 

0 20 40 60 80 100 120 140 160 180

 

 

F
re

q
u

en
cy

Diameter (nm)

Mean diameter: 105 nm

Standard deviation: 24.14 nm 

(b)

 

Figure 2: a) SEM images of GO/PVA/CS nanofibers; b) 

size distribution chart of GO 

Figure 2a illustrates the SEM image of PVA/CS/GO 

fabricated at 14% wt of PVA concentration, PVA/CS 

ratio 8/2 (wt/wt), 11% wt of GO, 15 cm of tip-to-

collector distance and 15 kV of applied voltage. It can 

be observed that nanofibers are uniform. Using ImageJ 

calculated average diameter of GO/CS/PVA nanofibers 

was 105  ± 24.14 nm.  

Figure 3 shows FTIR spectra of PVA (a); CS (b); GO (c), 

and GO/CS/PVA nanofibers (d). The characteristic 

peaks of CS, PVA and GO appeared. The peaks at 1602 

cm-1 and 719 cm-1 indicate the presence of the amine 

group (N-H). The peak at 1726 cm-1 represents the 

C=O bond of the carboxylic group. The broad and 

strong peak at 3422 cm-1 corresponds to the OH 

stretching vibration.  The sharp peak at 2918 cm−1 is 

assigned to the asymmetric stretching of the -CH2 

group.  
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Figure 3: FTIR spectra of PVA (a); CS (b); GO (c), and 

GO/CS/PVA nanofibers (d). 
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Figure 4 shows the X-ray diffraction (XRD) pattern of 

PVA, CS, GO and GO/PVA/CS nanofibers. Compared 

to pure CS, PVA, and GO, CS/PVA/GO nanofibers have 

three typical peaks at 2θ = 10.67°, 19,7°, and 28°. The 

peak at 2θ=19.7o is the characteristic peak of PVA and 

CS [29]. The typical peak at 2θ=10.67° corresponds to 

the (001) plane of GO. When CS and PVA molecules 

are in low interaction, CS or PVA has its own crystalline 

region, and the XRD curve can be observed as a simple 

mixing curve for CS and PVA. Thus, there were 

interactions among CS, PVA, and GO in the nanofibers. 

 

Photovoltaic performance 

 

Main photovoltaic factors were determined including 

short-circuit photocurrent density (Jsc), open-circuit 

voltage (Voc), fill factor (FF), maximum current density 

(Jmax), maximum voltage (Vmax), maximum power (Pmax), 

the intensity of the incident monochromatic light (IIns), 

and solar energy-to-electrical-energy conversion 

efficiency (η). The current versus voltage curves were 

plotted. The solar energy-to-electrical energy 

conversion efficiency (η) and fill factor (FF) were 

obtained from the equations:  
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Figure 5: The J-V plot of DSSCs using PVA /CS/GO 

fibers with the dye of the leaf of magenta plant 

Figure 5 depicts the J-V curves for the DSSC fabricated 

from the counter electrode of PVA/CS/GO nanofibers 

and a sensitizer extracted from the leaf of magenta. 

The open-circuit voltage (Voc) was 50 mV and the short 

circuit density (Jsc) was 0.08 mA/cm2.  From the J-V 

curve of DSSC, the maximum power point (Pmax) was 

evaluated corresponding to the photocurrent 

maximum (Jmax) and potential maximum (Vmax). In this 

study, the maximum Pmax of 6.56 mW/cm2, the filling 

coefficient of 1.71, and solar energy-to-electrical energy 

conversion efficiency (η) of 0.65% were determined.  

The solar energy-to-electrical energy conversion 

efficiency of fabricated DSSC with various natural dyes 

and counter electrodes are summarized in Table 1. 

When using the dye extracted from the leaf of 

magenta plant as a sensitizer, the efficiency was a little 

higher  than that of the other natural dyes  which use 

carbon as the catalyst. It may be because the 

interaction between anthocyanin within the dye with 

the surface of TiO2. With Pt catalyst, the efficiency 

obtained in this study was almost higher than that of 

previous studies  for other types of natural dyes. 

Therefore, DSSC has been successfully fabricated with 

a natural photosensitizer extracted from magenta 

leaves and the counter electrode based on 

CS/PVA/GO nanofibers. 

Table 1: Photovoltaic efficiency of DSSCs with various 

natural dyes and catalysts 

Dye Catatalyst Efficiency 

(%) 

Ref. 

Nasturtium flowers Platinum 0.28 [30] 

Citrus reticulata Platinum 0.71 [31] 

Red frangipani Platinum 0.3 [32] 

Rhododendron Platinum 0.57 [33] 

Shea Carbon 0.25 [34] 

Pereskia bleo Carbon 0.11 [35] 

Magenta leaves (this 

study)  

GO/CS/PVA 0.65   

 

Conclusion 

 

GO was successfully synthesized from coconut shell 

charcoal by Hummer’s Modified method and 

CS/PVA/GO nanofibers were fabricated by an 

electrospinning method And they were characterized 

by SEM, XRD, and FTIR. CS/PVA/GO nanofibers were 

deposited on a FTO glass substrate as a counter 

electrode of DSSC while a natural dye extracted from 

magenta leaves was used as a sensitizer. The solar 

energy-to-electrical energy conversion efficiency from 

Pt-free counter electrode was 0.65%. 
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